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Abstract
Understanding the implicit values and beliefs of diverse groups and cultures using qualitative texts – such as
long-form narratives – and domain-expert interviews is a fundamental goal of social anthropology. This paper
builds upon a 2022 study that introduced the NLP task of Recognizing Value Resonance (RVR) for gauging
perspective – positive, negative, or neutral – on implicit values and beliefs in textual pairs. This study included
a novel hand-annotated dataset, the World Values Corpus (WVC), designed to simulate the task of RVR, and a
transformer-based model, Resonance-Tuned RoBERTa, designed to model the task. We extend existing work by
refining the task definition and releasing the World Values Corpus (WVC) dataset. We further conduct several
validation experiments designed to robustly evaluate the need for task specific modeling, even in the world of
LLMs. Finally, we present two additional Resonance-Tuned models trained over extended RVR datasets, designed
to improve RVR model versatility and robustness. Our results demonstrate that the Resonance-Tuned models
outperform top-performing Recognizing Textual Entailment (RTE) models in recognizing value resonance as well
as zero-shot GPT-3.5 under several different prompt structures, emphasizing its practical applicability. Our find-
ings highlight the potential of RVR in capturing cultural values within texts and the importance of task-specific modeling.
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1. Introduction

Understanding the values and beliefs inherent to
different cultures and populations is a foundational
endeavor in anthropology, sociology, and other so-
cial sciences. However, values vary across cultures
and languages, reflecting an array of differing iden-
tities and standpoints. Recent advances in Natural
Language Processing (NLP) have allowed us to
quantify traditionally qualitative, "thick" data linking
cultural values to well-being (Fleche et al., 2012),
trust (Jen et al., 2010), political support , gender
gaps and biases (Friedman et al., 2019), social me-
dia usage (Hsu et al., 2021) and other factors. Thus,
computational approaches allow us to identify pat-
terns within culture, augmenting qualitative and
quantitative methods–such as surveys, in-depth
interviews, or ethnographic fieldwork– opening up
new possibilities for large-scale investigations of
implicit cultural values.

Researchers have used high-dimensional word

embeddings to quantify cultural-linguistic biases,
e.g., plotting gender bias within large corpora
(Bolukbasi et al., 2016), across time (Garg et al.,
2018), or across countries (Friedman et al., 2019).
These high-dimensional analyses quantify biases
as axis projections or distance ratios in high-
dimensional spaces, e.g., to quantify the relative
association of the occupation “CEO” with “male” vs.
“female” semantic spaces, but these approaches
do not directly assess the cultural resonance with
values like “men make better business executives
than women.”

This paper builds upon a 2022 study by Ben-
kler et al. (2022) that introduces the task of Rec-
ognizing Value Resonance (RVR). RVR aims to
identify implicit endorsement, rejection, or neutral-
ity toward certain values and beliefs within textual
pairs. The 2022 study presented a hand-annotated
dataset called the World Values Corpus (WVC)
designed to model RVR and a transformer-based



model called Resonance-Tuned RoBERTa, or short-
hand: Res-RoBERTa, for this task. The authors
demonstrated that RVR is distinct from Recogniz-
ing Textual Entailment (RTE) by comparing the per-
formance of Resonance-Tuned RoBERTa against
top-performing RTE models.

In this validation study, we further refine the RVR
task, publicize RVR training data, perform several
extended validation experiments, and present a
new Res-RoBERTa model with increased versatil-
ity and robustness. Through this work we aim to
clarify the task definition, assess the necessity for
a task-specific model, and evaluate the usability of
existing RVR models, emphasizing their real-world
applications.

2. Related Work

2.1. RVR’s Structural Siblings:
Recognizing Textual Entailment &
Stance Detection

Recognizing textual entailment (RTE), sometimes
also referred to as natural language inference (NLI),
is a well-established task in NLP that seeks to
determine the semantic relationship between two
text snippets. It has many applications like ques-
tion answering, information retrieval, and machine
translation (Harabagiu and Hickl, 2006; Dagan
et al., 2006). In RTE, the task involves taking a
⟨premise, hypothesis⟩ pair of texts and predicting a
label: whether the premise text entails the hypoth-
esis (i.e., the hypothesis is likely true), contradicts
the hypothesis (i.e., the hypothesis is likely false),
or is neutral with respect to the hypothesis text (Gi-
ampiccolo et al., 2007).

RTE and NLI datasets comprise sets of
⟨premise, hypothesis, label⟩ entries, and some
datasets such as MNLI (Williams et al., 2017) and
SNLI (Bowman et al., 2015) have upwards of 430K
and 570K pairs, respectively. In these datasets, the
contradiction label is under-represented, with con-
tradictions comprising about 23% of labels in MNLI
and 1% of labels in SNLI (Hossain et al., 2020).

Another related NLP task is multi-class stance
detection, which predicts the attitude of a text to-
wards a given target, by taking ⟨text, target⟩ pairs
and producing one of three labels: in favor, against,
and neutral (Küçük and Can, 2020). This shares
structural similarities with RTE, capturing the rela-
tionship between two textual inputs using a valence-
based label.

2.2. Previous work in Recognizing Value
Resonance

The NLP task of Recognizing Value Reso-
nance (RVR) is structurally similar to the RTE

task described above. Analogous to the
⟨premise, hypothesis⟩ pairs in RTE, RVR takes
⟨statement, value⟩ pairs of texts and predicts a la-
bel for whether the statement resonates, conflicts,
or is neutral with respect to the value (Benkler
et al., 2022). Unlike RTE—which attends to factual
implication—RVR captures ideological resonance
in the space of moral and/or cultural values.

Previous work has applied RVR models to folk-
tales to predict cultural values (Benkler et al.,
2022), but no work to date has systematically vali-
dated RVR against a curated dataset or published
datasets for RVR training and validation; this is a
primary contribution of this paper.

2.3. The World Values Corpus
The World Values Corpus (WVC) is a comprehen-
sive, hand-annotated, English language dataset
consisting of 2,074 unique sentence pairs an-
notated with value resonance information labels
(Benkler et al., 2022). Entries take the form
of ⟨premise, hypothesis, label⟩ triads. The corpus
contains 384 unique hypotheses and 679 unique
premises. The hypotheses were designed to cover
the possible responses to 335 selected questions
from the World Values Survey (WVS) (Inglehart
et al., 2000) and its extended modules. They hy-
potheses were generated from the multiple choice
options in the WVS by authors either restating them,
or providing new statements the authors felt con-
tradicted them. The premises were authored with
respect to a specific corresponding hypothesis and
communicate the author’s perspective on the corre-
sponding hypothesis, either directly (23%) or implic-
itly through an episodic narrative (77%). Each of
these sentence pairs is assigned a label according
to the relevant RVR score (see section 3.1).

2.4. Touché Human Value Detection
Corpus

The Touché23-ValueEval Dataset for Identifying Hu-
man Values behind Arguments (Mirzakhmedova
et al., 2023) comprises 9,324 arguments from six
diverse sources, encompassing religious texts, po-
litical discussions, free-text arguments, newspaper
editorials, and online democracy platforms. Each
argument underwent annotation by three crowd-
workers for 54 values. This dataset extends the
Webis-ArgValues-22 corpus (Kiesel et al., 2022).
The value taxonomy employed for the argumenta-
tion framework is primarily based on social psychol-
ogist Dr. Shalom H. Schwartz’s research. These
values are categorized into four levels, selected for
their utility in social science research. One of these
levels is "category," which further organizes values
into 20 categories. Each argument consists of a sin-
gle premise, one conclusion, and a stance attribute



indicating whether the premise is in favor of (pro)
or against (con) the conclusion. The dataset in-
cludes category and value labels assigned to each
argument.

2.5. Large Language Models: Uses in
Zero-Shot Modeling

Large language models (LLMs), such as GPT-3,
-3.5, and -4(Brown et al., 2020b), are language mod-
els with extremely large numbers of parameters,
which can be trained on large, diverse corpora of
unlabeled text. GPT-3 has 175 billion parameters
and was trained on 570 gigabytes of text (Tamkin
et al., 2021). The large size of the models enables
their success at zero-shot task transfer (Radford
et al., 2019), and the models achieve success on a
diverse range of tasks such as translation, question-
answering, cloze (fill-in-the-blank) tasks, and tasks
that require on-the-fly learning, such as using a
novel word in a sentence, unscrambling words, or
performing calculations (Brown et al., 2020a).

Due to their success at a diversity of tasks, LLMs
have been trusted in a variety of applications such
as text summarization, code generation, and chat-
bot behavior. A substantial challenge with LLMs
is the desire to align models with "human values",
while lacking a clear way of knowing how to syn-
thesize the diverse range of values among people,
contend with bias in datasets, and come to an con-
sensus on what "human values" means (Tamkin
et al., 2021). The importance of understanding the
biases and limitations of large language models
and how these flaws affect downstream applica-
tions motivates our work described in Section 4.4,
which uses RVR to compare the moral values pre-
dicted by LLMs to those found in survey data.

3. Task Specification

In the following section, we extend the existing liter-
ature on the typology of RVR. We present a formal
task definition and comprehensive derivation of this
definition from RVR’s similar tasks.

3.1. Typology: Definition of Value
Resonance

Value Resonance is a directional relationship be-
tween pairs of text expressions, denoted by P, the
resonating “premise”, and H, the resonant “hypoth-
esis”. Given premise P, a hypothesis H “resonates”
if a human believing P would most likely hold H as
a value, is “neutral” if a human believing P ceteris
paribus would likely have no position on H, and
“conflicts” if a human believing P would most likely
hold a belief in opposition to H. Importantly, this
approach identifies values not explicitly mentioned

in the text. It is an open question whether human
readers also engage in value resonance reading.

3.2. Task Derivation & Distinction
The two NLP tasks most similar to RVR are Recog-
nizing Textual Entailment (RTE) and Stance Detec-
tion (SD). These three tasks are similar in aiming
to categorize the relationship between NL utter-
ances along some dimension, but differ in the di-
mension they target. RTE focuses on whether a
given text logically implies another. SD determines
a text’s attitude towards a given target. RVR identi-
fies whether a given text implies adherence to (or
disapproval of) a complex value.

RVR has a similar ternary output to SD but com-
mon definitions of stance detection (Küçük and Can,
2020) indicate that a stance act concerns topical
alignment (Mohammad et al., 2016) such as “Athe-
ism” rather than complex values such as “Religion
is more about making sense of life after death than
it is about making sense of life in this world.” RVR
more closely mirrors RTE in its task structure. How-
ever, where RTE is concerned with the question of
whether one utterance implies another, RVR asks
“is a person who has this value also likely to hold
(or oppose) that value.”

“I work so much that I never get 
to see my family.  I’m quitting!”

Recognizing Textual Entailment

Stance Detection

Recognizing Value Resonance

Hypothesis: 
Somebody is quitting their job.

Target: Family

Value: 
Work should not come before family.

Entails

In Favor

Resonates

Figure 1: Example showing difference between
Recognizing Textual Entailment (RTE), Stance De-
tection (SD), and Recognizing Value Resonance
(RVR).

Figure 1 presents an illustrative example to help
conceptualize the difference between these tasks.
Imagine that persons A and B are sitting on a train.
B hears A exclaim over the phone “I’m quitting: I
work so much I never get to see my family.” B
may thus conclude the following things: logically,
someone (in this case A) is quitting their job (RTE),
A has a positive attitude towards the concept of
“Family” (SD), and A holds the belief that “In life,
family should be prioritized above work.” (RVR).



In this way, we see how all three are similar forms
of reasoning that may occur concurrently in the
human mind but require distinct characterization to
model computationally.

To model the task of RVR in our own work, we
consider the structural similarity between RVR and
RTE to outweigh the similarity between SD and
RVR. While SD possesses a greater similarity in
ternary output to RVR than RTE does, RTE and
RVR share much greater similarity in problem con-
struction than SD and RVR. We therefore concur
with the approach of the 2022 study (Benkler et al.,
2022) and proceed in modeling RVR by finetuning
NLP models pretrained to the structurally proximal
task of RTE.

4. Approach

4.1. Data Collection
To ensure the robust development and evaluation
of our RVR model, we employed a comprehensive
approach to data collection. This process involved
three distinct datasets that serve various purposes.
The initial RVR dataset, extracted from the World
Values Corpus (WVC) dataset (Benkler et al., 2022),
acts as a foundational element for model validation
(as detailed in Section 5). This dataset provides a
well-established benchmark for assessing our RVR
model’s performance. For transparency and refer-
ence, Table 1 presents the distribution statistics of
this RVR dataset across different model splits. It
is crucial to note that the initial WVC RVR model-
ing data (n=1664) exclusively comprises premises
from narrative annotations1.

Resonates Neutral Conflict Total
Training 277 (0.26) 704 (0.66) 83 (0.08) 1064

Validation 71 (0.27) 179 (0.67) 17 (0.06) 267
Testing 86 (0.26) 217 (0.65) 30 (0.09) 333
Total 434 (0.26) 1100 (0.66) 130 (0.08) 1664

*The label distribution under each split was not significantly different from
the WVC. 2-sample Kolmogorov-Smirnov Test: (p val > 0.99)

Table 1: WVC RVR Dataset Distribution Statistics
and modeling splits. Parentheses report data pro-
portions.

In addition to the WVC-based dataset, we gen-
erated two distinct augmented datasets, each with
its unique objectives (as outlined in Section 6). Fig-
ure 2 illustrates the construction of these extended
datasets. The first, our Human Values Extension
(HVE) dataset, aimed to enhance the RVR model’s
extensibility. The HVE dataset is a superset of the
WVC dataset and an RVR coded version of the
arguments-training subset of the Touché Human
Values (Touche HV) dataset (Mirzakhmedova et al.,

1Annotations that implicitly endorse or reject a belief
through an episodic narrative.

2023), described in Section 2.4. The second aug-
mentation, or our Complete Extension, delved into
the realm of noise sensitivity. Here we included a
set of entirely nonsensical "garbage" strings (Fig-
ure 2; Noise) that were strategically connected to
either premises or hypotheses extracted from the
HVE training set. This multifaceted approach to
data collection not only diversifies our training data
but also equips our RVR model to handle a broader
range of real-world challenges and nuances.

Figure 2: Sankey diagram illustrating training data
origins and label compositions. Shown to the left of
the plot are the three origin datasets with annotated
sizes and bars indicating label distributions. The
plot nodes illustrate training, testing, and validation
splits of the relevant dataset.2

4.2. Modeling RVR
To model the task of RVR, we fine-tuned a base-
line Recognizing Textual Entailment (RTE) model,
RoBERTa MNLI (Liu et al., 2019), over the three
training datasets covered in Section 4.1. Each train-
ing iteration produced a distinct Resonance-Tuned
RoBERTa model, or shorthand: Res-RoBERTa
model. Model performance was assessed at the
conclusion of every training epoch, and hyperpa-
rameters were optimized to maximize accuracy
over each validation holdout set. The optimization
process utilized transformers (Wolf et al., 2020) for
training and ray-tune (Liaw et al., 2018) for hyper-
parameter tuning. Each hyperparameter setting
was run on a single machine with population based
hyperparameter refinement and resource alloca-
tion using a Population Based Training scheduler
(Jaderberg et al., 2017) and stochastic gradient de-
scent for optimization. The optimal hyperparameter

2The label distribution under each split was not sig-
nificantly different from the parent dataset 2-sample
Kolmogorov-Smirnov Test: (p > 0.99).



values for each training iteration are presented in
Table 2.

Model Training
Data

Learning
Rate α Momentum Training

Epochs
Random
Seed

Batch
Size

Res-
RoBERTa
WVC

WVC 1.4×10−5 0.708 2.16 ×
10−2 4 87 8

Res-
RoBERTa
HVE

WVC &
Touche HV 6.0×10−4 0.101 0.611 9 701 8

Res-
RoBERTa
Complete

WVC,
Touche HV

& Noise
1.0×10−5 0.897 0.581 3 754 2

Table 2: Res-RoBERTa Training Information and
Optimized Hyperparameters

4.3. RTE Competitors
Our baseline RTE competitors for modeling RVR
consist of five high-performing RTE models. These
models are RoBERTa MNLI, RoBERTa SNLI,
ELMo-based Decomposable Attention, Binary Gen-
der Bias-Mitigated RoBERTa SNLI, and Adversarial
Binary Gender Bias-Mitigated RoBERTa SNLI (Liu
et al., 2019; Parikh et al., 2016; Dev et al., 2020;
Zhang et al., 2018). They serve as benchmarks for
evaluating the performance of our RVR model.

4.4. RVR via LLMs: Prompt Engineering
To explore the task of RVR using Large Language
Models (LLMs), we selected OpenAI’s GPT-3.5 text-
davinci-003 LLM (ope; Brown et al., 2020b) as our
baseline LLM competitor. This LLM was configured
with specific parameters, including a maximum of
256 tokens, temperature set to 0.7, and a top-p
value of 1. To harness the capabilities of GPT-
3.5 for RVR, we adopted a systematic approach to
prompt engineering, encompassing various prompt
structures designed to guide GPT-3.5 in scoring
premise-hypothesis pairs for RVR.

In total, we designed nine distinct prompt struc-
tures, each tailored to elicit optimal responses from
GPT-3.5. Our prompt design started with three
foundational base prompts, each offering a unique
granularity in defining the RVR task. The ‘simple’
base prompt provided GPT-3.5 with a straightfor-
ward and concise definition of RVR integrated with
task instructions. The ‘annotator instructions’ base
prompt encapsulated a more condensed version of
the instructions originally provided to human anno-
tators during the collection of the WVC dataset, cap-
turing essential nuances of the task. The ‘complete’
base prompt furnished GPT-3.5 with a comprehen-
sive and detailed definition of RVR, as expounded
in this paper in Section 3.1.

We then explored six further prompt structure
designs by prepending simplified task instructions
and/or appending a request for reasoning to each
of the ‘annotator instructions’ and ‘complete’ base
prompts.

We constructed LLM prompts to score RVR using
the following template:3

“[⟨Concise Instructions⟩] ⟨RVR Definition⟩
[⟨Request for Reasoning⟩]
P: ⟨Premise⟩
H: ⟨Hypothesis⟩
Response: ”

This structured approach to prompt engineering ex-
posed GPT-3.5 to varying levels of task granularity
and contextual information, enabling it to generate
responses to RVR queries with diverse degrees of
sophistication. These prompt structures were in-
tended to help us elicit optimal model performance
in the task of RVR.

5. Validation

In this section, we embark on a comprehensive
validation study that comprises three key evalu-
ative stages. Our primary objective is to rigor-
ously assess the performance of the RVR model
introduced in Benkler et al. (2022) through vari-
ous benchmark comparisons. First, we scrutinize
its effectiveness by benchmarking it against exist-
ing Recognizing Textual Entailment (RTE) models,
thereby establishing a baseline for its performance.
Subsequently, we extend our analysis to evaluate
how the RVR model performs when compared to
the cutting-edge zero-shot capabilities of GPT-3. In
addition to these comparisons, we conduct stress
testing to ensure the robustness of our preliminary
results, leveraging insights from preliminary RTE
analysis through an additional prefix study. This
multifaceted approach is designed to present a thor-
ough and comprehensive validation study of the
RVR model’s capabilities, shed light on the potential
need for task-specific modeling of RVR, and pro-
vide insight into the model’s potential applications
and limitations.

5.1. Experiments & Results
5.1.1. Direct World Values Corpus Evaluation

Our initial experiments focus on evaluating the RVR
model’s performance over the WVC test set. The
results are presented in Table 3, marked as I. In
this experiment, we compare the performance of
Resonance-Tuned RoBERTa to its top competitors
from two categories: 5 established RTE models
and 9 distinct prompt structures used with GPT-
3.5.

In the initial evaluation over the WVC test set
(Section 5.1.1), we observe that Resonance-Tuned

3“[]” indicates inclusion not required.
4Global F1 scores are calculated as a weighted aver-

age by support for each label.



Model Overall "Resonant" "Neutral" "Conflicted"

Raw WVC Acc F1 Acc F1 Acc F1 Acc F1
I Evaluation Res-RoBERTa WVC 0.98 0.98 0.98 0.96 0.98 0.99 0.99 0.95

(Section LLM: Top Competitor 0.83 0.85 0.92 0.86 0.89 0.91 0.86 0.5
5.1.1) RTE: Top Competitor 0.64 0.66 0.84 0.61 0.65 0.73 0.78 0.4

A) B) "The C) "The text D) "The text"
"[stem]" author believes expresses that expresses the

[stem]" [stem]" belief that [stem]"
Prefix Study Acc F1 Acc F1 Acc F1 Acc F1

II (Section Resonance-Tuned RoBERTa 0.97 0.97 0.96 0.96 0.91 0.92 0.92 0.92
5.1.2) Top Competitor 0.7 0.72 0.72 0.74 0.68 0.71 0.71 0.73

Table 3: Comparative model performance at RVR, evaluated against the WVC test set. Model rows
marked “Top Competitor” indicate the top score achieved by any of the relevant evaluated models at
the corresponding metric (column). Acc columns report model accuracy. F1 report F14score. Study
I (top) reports performance results from the initial evaluation (Section 5.1.1).Table includes evaluation
results from the top RTE competitor and the top zero-shot LLM prompt construction. Results are reported
globally–"Overall"–and within-labels–“Resonant”, “Neutral”, “Conflicted”. Study II (bottom) reports model
performance over altered hypothesis structures. Top-most column headers indicate the corresponding
hypothesis structure used in testing model performance and retraining Resonance-Tuned RoBERTa.

RoBERTa outperforms all competitors from the set
of RTE models across all metrics. The performance
gap between Resonance-Tuned RoBERTa and the
top LLM competitor is consistent with these findings
though markedly narrower.

Figure 3 displays the confusion matrices for the
single top performing models in each category, pro-
viding some more finegrained insight. These re-
sults indicate that the most prevalent source of er-
ror in both the RTE and GPT-3.5 top competitors is
false conflict, as also evidenced by the exception-
ally low F1 scores achieved by each model over the
“Conflicted" label (Table 3). More specifically, the
RTE and LLM top competitors show a propensity
for mistaking conflict with neutrality.

Figure 3: Confusion matrices comparing Res-
RoBERTa WVC to its top performing competitor
from each category (RTE & LLM).

5.1.2. Prefix Assignment Study

To further explore and validate the performance
disparity in RVR between Resonance-Tuned
RoBERTa and top RTE models, we conduct a Pre-
fix Assignment Study. In this study, we restructured
the WVC hypotheses as standardized sentence

stems,5 which could be affixed with predefined pre-
fixes (Table 3, II; columns B-D). Previous research
employing RoBERTa-MNLI (Liu et al., 2019) to rec-
ognize inferences involving theory of mind (Co-
hen) suggests restructuring WVC hypotheses in
this manner could improve the baseline RTE mod-
els’ performance at RVR. This restructuring aims to
improve the performance of baseline RTE models
at RVR. After revising the hypotheses, we repeat
the training (Section 4.2) and evaluation processes
for each distinct hypothesis structure. The results
of this study are presented in Table 3, marked as II.

The results of our prefix study corroborate our
initial findings. Table 3, II shows, Resonance-Tuned
RoBERTa continues to outperform all compared
RTE models in the RVR task, irrespective of the
hypothesis structure.

6. Model Improvements: Versatility
and Robustness

In this section, we provide a comparative analysis
of our trio of Resonance-Tuned RoBERTa (Res-
RoBERTa) models, which were introduced in Sec-
tion 4.2. Our objective here is to broaden the adapt-
ability and noise tolerance of the RVR base model
(Res-RoBERTa WVC). Through these enhance-
ments, we aim to reinforce the existing RVR model,
enabling it to extend beyond its original scope.

Figure 4 offers a comprehensive overview of the
performance exhibited by our three Res-RoBERTa
models, as outlined in Table 2, across various sub-
sets of test data. It’s evident from our results that
each Res-RoBERTa model attains peak perfor-
mance on its corresponding test set. This outcome
is a natural consequence of the fine-tuning process,

5We excluded 32 WVC hypotheses that could not be
framed in the specified fashion.



Figure 4: Barcharts illustrating F1 score achieved
over RVR test sets 4.2 by each Res-RoBERTa
model and the top scores achieved by any single
RTE and GPT3 competitor.

which tailors the models to excel in their specific
domains. However, it also raises concerns about
potential for model overfitting.

Notably, the all three RVR-tuned models con-
sistently outperform the leading RTE competitor
across all test sets excepting the noisy test set,
where Res-RoBERTa HVE fails. This pattern re-
inforces our validation study (Section 5) findings.
We encounter more nuanced results when compar-
ing Res-RoBERTa models to zero-shot GPT-3.5.
The highest-performing GPT-3.5 prompt structure
exhibits higher accuracy on the Touche HV test
set compared to Res-RoBERTa WVC, along with
a reduced susceptibility to noise in comparison to
non noise-tuned Res-RoBERTa models. However,
it consistently lags behind Res-RoBERTa models
fine-tuned to the relevant RVR task.

Further insight into the models’ comparative per-
formance can be gleaned from examining their
performance distributions across grouped Res-
RoBERTa models and GPT-3.5 prompts (Figure
5). Notably, the only test dataset with any overlap
in model performance interquartile ranges (IQR) is
the Noise dataset, universally comprised of noisy
neutral pairs. Across all test datasets that include
non-neutral labels, the Resonance-Tuned models
consistently deliver performance score IQRs above
those achieved by GPT-3.5.

Turning our focus back to the Res-RoBERTa
models, our findings reveal that the Res-RoBERTa
HVE model greatly enhances the model’s adaptabil-

Figure 5: Boxplots illustrating RVR performance
distributions across GPT-3.5 prompt structures and
Res-RoBERTa models.

ity to novel hypotheses but substantially diminishes
its noise sensitivity, even underperforming when
compared to the leading RTE competitor. Con-
versely, the complete Res-RoBERTa model dis-
plays the lowest accuracy and F1 scores on the
WVC. However, it shines when subjected to the
complete test set, which includes subsets of the
WVC, the Touche HV extension, and the Noise
dataset, presenting a more diverse and challeng-
ing testing scenario.

Considering these outcomes, we contend that
the Res-RoBERTa Complete, while marginally less
efficient in traditional RVR tasks, emerges as the
most resilient and versatile among the three models.
Its ability to tackle a broader spectrum of real-world
challenges, including noisy data, underscores its
adaptability and robustness. These enhancements
solidify the model’s potential to excel in various
contexts.

7. Discussion

Through a series of comprehensive model evalua-
tions, we have demonstrated the potential of RVR
in capturing cultural values within texts and the im-
portance of task-specific modeling.

Our validation study compares a base RVR
model, Res-RoBERTa WVC, to top-performing Rec-
ognizing RTE models and zero-shot GPT-3.5. Our
findings reveal that Res-RoBERTa consistently out-
performs RTE models in recognizing value reso-
nance across various test datasets, emphasizing its
practical applicability. By comparison, using GPT-
3.5 with carefully engineered prompts, performs
well but still lags behind task-trained Res-RoBERTa
models.

We have further extended the baseline Res-
RoBERTa model (Res-RoBERTa WVC) by intro-
ducing two additional variants, each with its own
strengths and weaknesses. The Res-RoBERTa
HVE model enhances adaptability to novel hypothe-
ses but diminishes noise sensitivity so may under-
perform over noisy data. The Res-RoBERTa Com-
plete model, while slightly less efficient in traditional



RVR tasks, demonstrates both high resilience and
versatility, making it suitable for a broader range of
real-world challenges.

7.1. Limitations and Future Work

While our study highlights the potential of Recog-
nizing Value Resonance (RVR) and Resonance-
Tuned RoBERTa models, it’s important to acknowl-
edge several limitations and methods for address-
ing these limitations.

7.1.1. Modeling

First, in our modeling approach, we focused on hy-
perparameter optimization to maximize accuracy
over validation holdout sets for each Res-RoBERTa
model. While this is a common practice in machine
learning, it has its own set of limitations. Hyperpa-
rameter optimization often tailors the model’s per-
formance to the validation data, which may not fully
represent the true data distribution. Consequently,
this process can make the model overly specialized
for the validation set, potentially leading to overfit-
ting. Moreover, if there is a label imbalance present
in the underlying data, optimizing for unweighted
accuracy can lead models to perform more poorly
on underrepresented labels. This is one possible
explanation for the Res-RoBERTa HVE’s notably
poor performance over noisy neutrals. To mitigate
these limitations, future research should explore
hyperparameter optimization strategies that con-
sider a more robust metric, like weighted F1 score.
Additionally, hyperparameter tuning should be con-
ducted focusing on balanced performance across
several cross-validation splits.

7.1.2. Data

RVR models are trained on existing datasets, which
may contain inherent biases present in the data
sources. The values and beliefs identified by the
models are influenced by the data they are trained
on, and any biases in these datasets can be re-
flected in the model’s predictions. Furthermore, all
hypotheses and non-noisy premises are English.
This likely introduces implicit language bias. For ex-
ample, terms like ’work’ or ’employment’ may carry
different meanings within languages, both seman-
tically and culturally. Therefore, RVR models may
not perform equally well on all types of texts or in
all cultural contexts. Their performance may vary
based on the complexity and nuances of different
languages, cultures, or domains.

The WVC includes sentences comprising restate-
ments, negations, narrative restatements, and nar-
rative negations of WVS values, but these are not
themselves cultural texts. Consequently, the WVC

results reported in this paper should not be inter-
preted as RVR performance on real cultural texts.
Moreover, the present work uses the WVS as a
source of vetted cross-cultural values, but we do
not believe the WVS to be complete over all cul-
tures or over time with respect to any single culture.
While the WVS allows us to compare many different
countries using the same “measuring stick,” it also
introduces a perception bias, ignoring other per-
ceptions and ways of thinking, seeing, and sensing.
Therein, using the WVS as the basis for WVC con-
struction and initial training of Resonance-Tuned
RoBERTa introduces these biases into the dataset
and the model itself.

While we have introduced extended RVR models
to improve adaptability, they may still have limita-
tions in handling entirely novel or highly specialized
domains. The versatility of RVR models may be
limited by the diversity of training data. Despite our
efforts to create models robust to noisy data, no
model is immune to extreme noise or adversarial
manipulation. Handling extremely noisy or inten-
tionally misleading texts remains a challenge.

8. Conclusions

In this paper, we refine and validate the task of
Recognizing Value Resonance (RVR), an NLP task
aimed at identifying implicit endorsement, rejection,
or neutrality toward specified values in textual pairs.
Our results demonstrate the potential of RVR in cap-
turing cultural values within texts and emphasize
the importance of task-specific modeling. Through
a comprehensive validation study, we compare
our base RVR model, Resonance-Tuned RoBERTa
WVC, to top-performing Recognizing Textual En-
tailment (RTE) models and large language models
(LLMs), particularly GPT-3.5. Our findings consis-
tently showed that Res-RoBERTa outperformed
RTE models in recognizing value resonance, high-
lighting the theory that “resonance” possesses char-
acteristics distinct from those of entailment. Fur-
thermore, zero-shot GPT-3.5, while effective, still
lagged behind task-trained Res-RoBERTa models,
suggesting the necessity for task-specific tuning.

We further extended the baseline RVR model
with two Res-RoBERTa variants, each offering
unique contributions to model strengths. These
models were designed to enhance adaptability and
robustness to noisy data, making them more suit-
able for various real-world challenges. While our
study has shown promising results, several limita-
tions remain, including potential biases in training
data, language bias, and difficulties in handling
extremely noisy or adversarial texts. Future work
should focus on refining the task definition, address-
ing biases in training data, and exploring hyper-
parameter optimization strategies to improve the



adaptability and robustness of RVR models.
In conclusion, this paper advances the under-

standing and practical implementation of Recog-
nizing Value Resonance, a task essential for com-
prehending implicit cultural and moral values within
diverse textual content. Our studies underscore the
importance of specialized models for the RVR task,
as it presents unique challenges not addressed by
traditional RTE models nor captured by zero-shot
LLMs. Furthermore, our extended and refined Res-
RoBERTa Complete models provide a foundation
for recognizing value resonance in text and offer
robust performance across English language texts.
The advancements in modeling presented pave the
way for further research and application of RVR to
computational social science, anthropology, and
related domains, enhancing our ability to analyze
and interpret societal values and norms at scale.

Ethical Impact Statement

A debated issue in the current discourse on lan-
guage models is concerned with value alignment,
and value representation in AI systems. Being able
to measure the plurality of values across various
cultures is important so we better understand 1)
biases inherent in AI systems, 2) which values are
missing due to lack of data and 3) risk of exacer-
bating bias against cultures or groups with no rep-
resentation. Our work attempts to mitigate those
shortcomings and provide a cross-cultural and scal-
able solution to practitioners within the field of AI
ethics and policy concerned with value alignment,
but also more broadly to the study of anthropology,
sociology, political science, and the social-science
community. The WVC was created from publicly
available survey questions of the World Value Sur-
vey and used publicly available training datasets
specifically developed for this type of research (e.g.
Touché23-ValueEval). Our goal in releasing the
World Values Corpus and a complete methodol-
ogy for training Resonance-Tuned RoBERTa is to
facilitate and further research in this domain. How-
ever, given the limitations addressed in Section 7.1,
the potential inclusion of unaccounted-for biases in
WVC construction and annotation, and the novel
nature of "resonance" recognition both as a theo-
retical concept and NLP task we do not believe this
system is yet ready for large scale deployment and
use. Broad application of this model would be pre-
mature as, without further work, our models have
the potential to generate results that propagate bi-
ases and misidentify important cultural concepts.
We hope to continue to develop this system, better
define this task, and foster extensibility and reli-
ability of the WVC and RVR across cultures and
cultural texts.
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