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Abstract

The concept of “affordance” represents the relationship
between human perceivers and their environment. Af-
fordance perception, representation, and inference are
central to commonsense reasoning, tool-use and cre-
ative problem-solving in artificial agents. Existing ap-
proaches fail to provide flexibility with which to reason
about affordances in the open world, where they are in-
fluenced by changing context, social norms, historical
precedence, and uncertainty. We develop a formal rules-
based logical representational format coupled with an
uncertainty-processing framework to reason about cog-
nitive affordances in a more general manner than shown
in the existing literature. Our framework allows agents
to make deductive and abductive inferences about func-
tional and social affordances, collectively and dynami-
cally, thereby allowing the agent to adapt to changing
conditions. We demonstrate our approach with an ex-
ample, and show that an agent can successfully reason
through situations that involve a tight interplay between
various social and functional norms.

Introduction
Natural human activities involve using and manipulating ob-
jects around us and reasoning about our environment. Some-
times these activities involve standard reasoning tasks, like
changing lanes while driving, which requires using a steer-
ing wheel and pedals, all while observing the road and mak-
ing sure that lanes are clear. Other times, these activities in-
volve more creative reasoning tasks like solving puzzles and
finding novel uses for objects. When performing these ac-
tivities not only are we recognizing these objects in our en-
vironment, but we know what to do with them (i.e., we can
perceive object affordances). We use our imagination and
invoke mental simulations to construct variations of objects
and actions to infer these affordances. We then use these af-
fordances to reason about the task at hand. Learning how
to use objects is a highly desirable skill for artificial agents,
as well. Unfortunately, although robots are proficient at rec-
ognizing object features, they are less-skilled at recognizing
what can be done with these objects.

In this paper, we present a novel approach based on
Dempster-Shafer (DS) theory (Shafer 1976) and “uncertain
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logic” for inferring object affordances. As part of this effort,
we are in the process of developing a computational model
for affordance that can represent complicated activities and
can account for the dynamic and continuous nature of real-
world scenarios. We will demonstrate our approach with an
example involving contextual and commonsense reasoning.

Background

James Gibson (1979) introduced the concept of “affordance”
to represent the relationship between the agent and its en-
vironment. Past work in formalizing this relationship has
largely focused on modeling affordance using either statisti-
cal formalisms or ontology-based approaches. For example,
Montesano et al. have developed statistically inspired causal
models of affordance using Bayesian Networks to formal-
ize the relationship between object features, actions and ef-
fects (Montesano et al. 2007). Varadarajan et al. (Varadara-
jan 2015) developed a detailed knowledge-ontology based
on conceptual, functional and part properties of objects, and
then used a combination of detection and query matching
algorithms to pinpoint the affordances for objects.

Despite these efforts, affordance representation faces
many challenges that have not been overcome in the pre-
vious work. These approaches fail to provide flexibility with
which to reason about affordances in the open world, where
they are influenced by changing context, social norms, his-
torical precedence, and uncertainty. For example, these cur-
rent approaches cannot reason that coffee mugs afford grasp-
ing and drinking, while also affording serving as a paper-
weight or cupholder, or depending on the context, as family
heirloom not meant to be used at all.

Representing Cognitive Affordances

We propose a novel model and formal rules-based logical
representational format for cognitive affordances, in which
an object’s affordance (A) and its perceived features (F ) de-
pend on the context (C). We use Dempster-Shafer (DS) the-
ory for inferring affordance (A) from object features (F ) in
contexts (C). DS theory is an uncertainty processing frame-
work often interpreted as a generalization of the Bayesian
framework.

The proposed cognitive affordance model consists of four
parts: (1) a set of perceivable object features (F ), (2) a set
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of context states (C), (3) a set of object affordances (A), and
(4) a set of affordance rules (R) from object features and
context states to affordances taking the overall form:

r :≡ f ∧ c =⇒ [α,β]a

with f ∈ F , c ∈ C, a ∈ A, r ∈ R, [α, β] ⊂ [0, 1]. Here,
the confidence interval [α, β] is intended to capture the un-
certainty associated with the affordance rule r such that if
α = β = 1 the rule is logically true, while α = 0 and
β = 1 assign maximum uncertainty to the rule. Rules can
then be applied for a given feature percept f in given context
c to obtain the implied affordance a under uncertainty about
f , c, and the extent to which they imply the presence of a.
We have previously shown that these types of rules are very
versatile and that we can employ DS-theoretic modus po-
nens to make uncertain deductive and abductive inferences
(Williams et al. 2015). Most critically, these rules allow us
to address representational challenges with mere Bayesian
models such as inferring P (A|F,C) by way of P (F |A,C),
P (A|C), and P (C) when we often have no practical way
to obtain the necessary probability distributions for all the
affordances for an object. We will next review the basics of
Dempster Shafer theory to be able to further discuss our in-
tended use of these rules.

Dempster-Shafer Theory Preliminaries

A set of elementary events of interest is called Frame of Dis-
cernment (FoD). The FoD is a finite set of mutually exclu-
sive events Θ = θ1, ..., θN . The power set of Θ is denoted
by 2Θ = A : A ⊆ Θ (Shafer 1976).

Each set A ⊆ 2Θ has a certain weight, or mass associ-
ated with it. A Basic Belief Assignment (BBA) is a mapping
mΘ(·) : 2Θ → [0, 1] such that

∑
A⊆Θ mΘ(A) = 1 and

mΘ(∅) = 0. The BBA measures the support assigned to the
propositions A ⊆ Θ only. The subsets of A with non-zero
mass are referred to as focal elements and comprise the set
FΘ. The triple E = {Θ,FΘ,mΘ(·)} is called the Body of
Evidence (BoE). For ease of reading, we sometimes omit
FΘ when referencing the BoE.

Given a BoE {Θ,FΘ,mΘ(·)}, the belief for a set of hy-
potheses A is Bel(A) =

∑
B⊆A mΘ(B). This belief func-

tion captures the total support that can be committed to A
without also committing it to the complement Ac of A. The
plausibility of A is Pl(A) = 1 − Bel(Ac). Thus, Pl(A)
corresponds to the total belief that does not contradict A.
The uncertainty interval of A is [Bel(A), P l(A)], which
contains the true probability P (A). In the limit case with no
uncertainty, we get Pl(A) = Bel(A) = P (A).

Logical inference with uncertainty can be performed us-
ing DS-theoretic Modus Ponens (denoted 
) (Tang et al.
2012). We will use the DS-theoretic AND (denoted ⊗) to
combine BoEs on different FoDs (Tang et al. 2012), and
Yager’s rule of combination (denoted

⋂
) to combine BoEs

on the same FoD (Yager 1987). We choose to use Tang’s
models of Modus Ponens and AND over other proposed
models because those models do not allow uncertainty to be
multiplicatively combined. Similarly, Yager’s rule of combi-
nation is chosen because it allows uncertainty to be pooled

Algorithm 1 getAffordance({ΘF ,mf},{ΘC ,mc},R)
1: {ΘF ,mf}: BoE of candidate perceptual features
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: S = S ∪ {(mf ⊗mc)�mr=fc→a}
7: end for
8: G = group(S)
9: ψ = ∅

10: for all group ga ∈ G do

11: ψ = ψ ∪ {
|ga|⋂

j=0

gaj}
12: end for
13: return ψ

in the universal set, and due to the counter-intuitive results
produced by Dempster’s rule of combination, as discussed
in (Zadeh 1979).

For two logical formulae φ1 (with Bel(φ1) = α1 and
Pl(φ1) = β1) and φ2 (with Bel(φ2) = α2 and Pl(φ2) =
β2, applying logical AND yields φ1 ⊗ φ2 = φ3 with
Bel(φ3) = α1 ∗ α2 and Pl(φ3) = β1 ∗ β2.

For logical formulae φ1 (with Bel(φ1) = α1 and
Pl(φ1) = β1) and φφ1→φ2

(with Bel(φφ1→φ2
) = αR and

Pl(φφ1→φ2
) = βR, the corresponding model of Modus Po-

nens is φ1 
 φφ1→φ2
= φ2 with Bel(φ2) = α1 ∗ αR and

Pl(φ2) = 1− ((1− Pl(β1)) ∗ (1− Pl(βR)))
Moreover, we will use the “ambiguity measure” λ defined

in (Nunez et al. 2013) to be able to compare uncertainties
associated with formulas φ and their respective confidence
intervals [α, β]:

λ(α, β) = 1 +
β

γ
log2

β

γ
+

1− α

γ
log2

1− α

γ

where γ = 1 + β − α.

Here, φ is deemed more ambiguous as λ(α, β)→ 0.

Inferring Affordances with Uncertain Logic

To infer cognitive affordances, we propose to start with the
first prototype inference algorithm shown in Algorithm 1
and refine it to tailor it specifically to a cognitive affordance
model.

The algorithm takes three parameters: (1) a BoE of
candidate perceptions {ΘF ,mf} is provided by the low-
level vision system, (2) a BoE of relevant contextual items
{ΘC ,mc} provided by a knowledge base or some other part
of the integrated system that can provide context informa-
tion, and (3) a table of cognitive affordance rules R.

The inference algorithm then examines each rule rfc→a ∈
R (line 5), and performs DS-theoretic AND and Uncertain
Modus Ponens to obtain ma from mfc→a and mfc (line 6).

Note that since we allow multiple affordance rules to be
considered, multiple affordances may be produced. Multiple
rules may produce the same affordances for various reasons,
possibly at different levels of belief or disbelief. However,

598



we seek to return the set of unique affordances implied by a
set of perceptions f .

After considering all applicable affordance rules, we
group affordances that have the same content but different
mass assignments (line 8), and use Yager’s rule of combina-
tion (line 11) to fuse each group of identical affordances.

Finally, we can use the ambiguity measure λ to deter-
mine whether an inferred affordance should be realized and
acted upon. For example, we could check the ambiguity of
each affordance a ∈ ψ on its uncertainty interval [αi, βi]:
if λ(αi, βi) ≤ Λ(c) (where Λ(c) is an ambiguity threshold,
possibly depending on context c), we do not have enough
information to confidently accept the set of inferred affor-
dances and can thus not confidently use the affordances to
guide action. However, even in this case, it might be possi-
ble to pass on the most likely candidates to other cognitive
systems. Conversely, if λ(αi, βi) > Λ(c), then we take the
inferred affordance to be certain enough to use it for further
processing.

Example: Using and Handing Over Objects

We will now present an evaluation of the proposed represen-
tation and algorithm, and demonstrate the capabilities facili-
tated by this approach with an example of using and handing
over objects in a kitchen. Handing over objects “properly” is
an important skill for helper robotic agents. When perform-
ing a handover, the robot will need to reason about the nor-
mative and contextual factors that influence the propriety of
a handover.

We will represent the agent’s knowledge about being a
kitchen-helper with 9 rules along with their respective uncer-
tainty intervals (Figure 1). We have chosen uncertainty inter-
vals in such a way that the more specific the rule, the more
certainty and higher degree of belief the agent has about that
particular rule.

Consider a robotic agent helper receiving instructions
from a human, Julia. Suppose Julia says to the robot: “Bring
me something clean I can use to cut this tomato.” The robotic
agent, X = self , parses this request from Julia and assigns
its own task-context and determines the types of affordances
it is interested in exploiting in the kitchen-environment. The
agent is confident that it is in the kitchen context and it fur-
ther determines, with a high degree of certainty, that it is
in the context of handing over an object in the kitchen, and
assigns context masses as follows:

domain(self , kitchen): mc1,1 = 1.0
task(self , give,O): mc2,1 = 0.95
task(self , use,O): mc2,1 = 0.05

At this point, the agent can review its environment and
examine each object more closely. Based on the set of rules,
it knows to look specifically for certain visual percepts stated
in the rules, such as near(), sharpEdge(), and so on.

Let us assume that the agent spots a knife on the counter.
Upon reviewing the physical features of the knife, the agent
determines masses for the relevant visual percepts cited in
the rules (e.g., hasSharpEdge(knife) = 0.95). The agent
examines each rule ri[αi,βi]

(per Algorithm 1) to obtain ma

from mfc→a and mfc.

Commonsense Physical Rules:

r1[0.8,1] := hasSharpEdge(O)∧
domain(X, kitchen) =⇒
cutWith(X,O)

General Social Rules:

r2[0.95,0.95] := ¬inUse(O,H)∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O,P ))

r3[0.95,0.95] := ¬inUse(O,H)∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O,P ))

General Object Grasp Rules:

r4[0.55,0.95] := near(O,G, holdPart(O,P ))∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O,P ))

r5[0.55,0.95] := ¬near(O,G, holdPart(O,P1))∧
near(O,G, funcPart(O,P2))∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O,P2))

Task-based Social Rules:

r6[0.8,0.9] := near(O,G, holdPart(O,P ))∧
task(X,use,O)∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O,P ))

r7[0.8,0.9] := near(O,G, funcPart(O,P ))∧
task(X, give, O)∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O,P ))

r8[0.95,0.95] := near(O,G, holdPart(O,P ))∧
¬dirty(O)
task(X,use,O)∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O,P ))

r9[0.95,0.95] := near(O,G, funcPart(O,P ))∧
¬dirty(O)
task(X, give, O)∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O,P ))

Figure 1: Cognitive Affordance Rules for a Kitchen-Helper
Agent.

For example, consider rule r1:

r1[0.8,1] :=

hasSharpEdge(O) ∧ domain(X, kitchen) =⇒
cutWith(X,O)

The agent will apply perceptual and contextual informa-
tion as follows, to determine the affordance implied by the
rule:

r1[0.8,1](mr = 0.8) :=

hasSharpEdge(knife)(mf = 0.95)∧
domain(self , kitchen)(mc = 1.0) =⇒

cutWith(self , knife)(ma = (mf ⊗mc)
mr = 0.76)

The uncertainty interval for the rule can then be com-
puted as [0.76, 1].The agent will then perform this analysis
for each of the other rules in the set to determine uncertainty
intervals for the implied affordances.

To be able to generate a set of unique affordances, a,
implied by feature, f , after considering all applicable af-
fordance rules, we thus group affordances that have the
same semantic content but different mass assignments (e.g.,
graspable()) and use Yagers rule of combination to fuse
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each group of identical intentions, adding the resulting fused
intention to set ψ.

Thus, we can generate a list of unique affordances avail-
able to the agent at the current moment in time, when it has
seen the knife:

Available affordances (Upon seeing the knife), ψ
cutWith(knife)[0.76, 1], λ = 0.29
graspable(self , knife,
holdPart(knife, handle))[0.96, 0.99], λ = 0.78

graspable(self , knife,
funcPart(knife, blade))[0.98, 0.99], λ = 0.88

The agent might decide that because there is a high de-
gree of certainty that the object under consideration has a
cutWith affordance, it will choose to grasp it and then se-
lect to grasp it at the blade (as opposed to the handle), to
accomplish a socially apropriate handover.

Discussion

We use very simple predicate-style descriptions for percepts,
context and affordances. Note, we have neither used a sys-
tematic ontology to represent these components, nor have
we elected a formal language. However, the proposed al-
gorithm and inference mechanism are sufficiently general-
purpose to work with any suitable formalism. Whatever for-
malism is selected, we argue for an explicit representation
of context because it can help constrain the set of affordance
rules as well as guide what the agent must attend to in its
perception of the world.

Thus far, we have not discussed, expressly, the origin of
the cognitive affordance rules and how an agent might gen-
erate or learn new rules, because this is not the focus of the
paper. Nevertheless, we expect these rules can be learned in
a number of different ways from explicit demonstration and
instruction (Cantrell et al. 2012), from observation through
reinforcement learning (RL) techniques (Boularias, Bagnell,
and Stentz 2015) or from exploration, and using multiple
different modalities including vision, natural language and
haptic information.

The proposed computational model is general and show-
cases the potential of an affordance-based uncertain logic
reasoning process. Reasoning about cognitive affordances
in a more general way, as outlined in this paper, has the
potential to assist in commonsense and creative reasoning
(e.g., by finding rules in the agent’s extended knowledge-
base that have similar affordances but are associated with
different contexts) as well as in sense-making (e.g., by rea-
soning about a situation looking at affordances of objects in
a scene collectively).

Conclusion and Future Work

In this paper, we proposed a novel framework and algorithm
based on Dempster-Shafer (DS) theory for inferring object
affordances. We demonstrated how the proposed framework
can handle uncertainties and be extended to include the con-
tinuous and dynamic nature of real-world situations, which
we believe is needed to allow artificial agents to be adaptable
to novel open-world scenarios.

The proposed framework has shown some potential, but
we will still need to address various challenges in compu-
tational complexity as well as ontology and definition for
context, and how the agent might move from one context to
another. We will look into a framework for learning various
affordance rules, and in doing so, we will need to incorporate
action formalisms to allow a more dynamic reasoning pro-
cess. Finally, we will be demonstrating the proposed frame-
work on robotic systems and grounding our representation
to work with embedded cognitive systems.
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