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Sense-Making Machines

Vasanth Sarathy

Although statistical machine learning techniques have led to significant ad-

vances in AI systems, they are still far from demonstrating fundamental intelligence

capabilities possessed by human toddlers and even some animals. After decades of

research and millennia of scientific and philosophical thought, the central goals of AI

– to explain and replicate human intelligence and creativity – still remain unmet. In

this thesis, I argue for instilling in AI systems, the ability to continually “make sense”

of its changing world to guide behavior and understand perceptual information. Dif-

ferent from current mainstream AI approaches, I propose that agents maintain and

update mental representations of the world that allow them to reason about sym-

bolic concepts under uncertainty. I show that such representations and inference

machinery are needed at all levels of cognitive processing – from language interpre-

tation, basic visual perception and action selection to high-level deliberation and

even creative problem-solving. In the latter, sense-making becomes sense-breaking,

in which I demonstrate how an agent can break its own assumptions and biases in

order to discover novel ideas and solutions. Symbolic representations allow an agent

to reason beyond statistical patterns, verify the veracity of their knowledge, recog-

nize gaps in their understanding, raise questions, and explore the world to seek out

answers. In doing so, such representations also allow artificial agents to provide us,

humans, explanations of their behaviors, allow us to better interpret and understand

their actions, and ensure that they comply with our social norms.
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Chapter 1

Introduction

Source: The New Yorker Collection

“Can you describe the shark?” This was a caption from Harry Bliss’ New

Yorker cartoon in which a lifeguard on a beach is yelling the question to a distressed

swimmer in the ocean. What would it take for an artificial intelligence (AI) agent

to appreciate the humor in this cartoon? We humans effortlessly understand the

absurdity involved here. Even though we do not see a shark, we assume that the

swimmer is distressed because the shark is attacking them. In addition, we make an

assumption about social norms being violated — namely, that the lifeguard should

be displaying more urgency and rushing to save the swimmer rather than posing

mundane questions from the comfort of their chair.
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1.1 The Case for Logical Sense-Making

Making and breaking these kinds of assumptions is crucial to human intelligence and

creativity. They fill gaps in our knowledge and resolve ambiguities in an otherwise

endless stream of perceptual information. When broken, they allow us to restructure

our knowledge in new ways and discover previously unknown connections. At the

core of the process of making and breaking assumptions is the ability to continually

assess and make sense of the world, resolving ambiguity to favor explanations that

make the most sense, and recognizing anomalies as possible avenues for creative

exploration.

Modern state-of-the-art AI systems do not “make sense” of data in this way.

Instead, they learn by extracting statistical patterns present in the data. They learn

to associate an input data sequence with its “most-likely” or statistically relevant

mental abstraction. Often, these statistical estimates are learned in conjunction

with a particular task like prediction or classification or clustering. So, sense-making

for today’s AI can be crudely summarized as the process of finding the most likely

statistical explanation for the data for a particular task.

In this thesis, I argue that statistical sense-making alone is insufficient and

that future AI systems will need to be able to do sophisticated logical reasoning over

their own knowledge. For this, they will need different types of knowledge (causal,

social, etc.) represented symbolically, and sophisticated reasoning machinery to

perform logical sense-making operations. One way to clarify the overlapping roles of

statistical and logical sense-making is to relegate logical and symbolic sense-making

to higher-level cognition, i.e., the sort we engage with when we deliberate or think

deeply about things. I show that such a clear division of labor is not realistic and

sense-making (with reasoning) occurs at all levels of cognitive processing – from

basic language understanding at the word-level, basic visual perception and action

selection to high-level deliberation and even creative problem solving.

Beyond interpreting the humor in New Yorker cartoons, future AI and robotic

systems will need sense-making abilities to both work effectively with humans and
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to solve problems autonomously. Consider the following idealized, and arguably

desirable, interaction between a human and their robot collaborator working together

to fix a loose screw.

human: Ah! This screw is loose. There should be

a screwdriver in the toolkit. Can you grab it?

robot: Okay.

robot: [Returning with a coin] I didn’t find one, but

here is a coin that might work.

human: Isn’t that Bob’s coin?

robot: Yes, but I checked with Bob and he said

we could use it.

(1)

First, in order to be helpful, the robot would need to understand the human

request. The robot has to be able to decipher word meanings, including words that

do not carry any semantics like the word “it”. At the sentence level, the robot would

need to understand that the question “Can you grab it” is not really a question to

be answered verbally, but a request to perform some actions. In addition, the robot

has to be able to handle the presumably novel scenario of a missing screwdriver and

improvise with another object (a coin in this case). In doing so, it must reason about

the affordances needed for the task, and potentially try different objects, and maybe

even different coin sizes. Visual stimuli alone might be insufficient to determine the

viability of the coin. Social norms like that of the ownership of the coin might need

to be considered. One coin might make more sense than another if it has all the

right properties and appropriate normative restrictions have been lifted. The central

claim in this dissertation is that if future AI systems and robots have to be able to

not only engage in such a dialog but also actually perform the underlying tasks then
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they must be able to reason over abstract conceptual knowledge about world.

1.2 Interdisciplinary Approach

Immanuel Kant, the 18th century German philospher argued that sense-making

is the process of assimilating sensory information into a coherent, unified whole

along with other ideas [Kan08]. Weick elaborated on this definition, stating that

sense-making is the process of structuring the known by placing stimuli into some

kind of framework that enables us to comprehend, understand, explain, attribute,

extrapolate and predict [Wei85].

But, what exactly is this “unified whole” or “framework”? What does it con-

tain? How exactly can it assimilate stimuli? I explore these questions, looking for

properties of mental representations and computational operations needed to make

sense of a variety of sensory stimuli – from language to visual perceptions. My ap-

proach is interdisciplinary in nature: I explore a variety of AI domains, formalize

different types of knowledge and reasoning needed within these domains, develop

algorithms and cognitive architectures for reasoning with this knowledge. Develop-

ing effective approaches requires bringing together many disciplines covering areas

of knowledge representation and reasoning, machine learning, natural language pro-

cessing, uncertainty processing, human-robot interaction, as well as cognitive science,

social psychology and ethics.

Building AI systems requires a number of representational, algorithmic and

architectural commitments. One unifying theme in this thesis is that despite the

variety of representational forms used in this thesis, they are largely symbolic, some-

times with numeric uncertainty. Representations are central to sense-making and

they allow an agent to abstract over their world. While this thesis argues for sym-

bolic representations and first order logic, it does not commit to any one fragment

or instantiation in particular. Sense-making for language understanding uses a di-

alect of logic programming as a symbolic representation, while work on affordances

uses uncertain logic. The work in creativity uses state transition models that are
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represented via classical planning. Each chapter covers a certain domain of AI and

accordingly will feature its own representational notation and characteristics.

1.3 Contributions and Outline of this Work

The plan of this thesis is as follows: This chapter introduced the key issues that I

address, discussing what sense-making is and why it is needed and what sorts of com-

putational requirements it demands. The major challenge of the thesis is in showing

exactly how sense-making, a somewhat nebulous notion, can be computationalized.

Part I takes up this challenge, discussing the role of sense-making in under-

standing language and in action selection. Specifically, Chapter 2 focuses on one

specific language interpretation task – pronominal anaphora resolution – in which

I discuss the sorts of knowledge and inference machinery that might be needed for

resolving ambiguity that arises when interpreting pronouns like "it." Chapter 3 ex-

tends the approach of Chapter 2 to another language interpretation task – indirect

speech act resolution – that is at a higher-level of processing (namely sentence level)

as compared to pronoun resolution, which deals with words.

Chapter 4 demonstrates the role of sense-making when using and manipu-

lating objects – perceiving and actualizing object affordances. Specifically, I discuss

how reasoning under uncertainty can be carried out in an integrated goal-oriented

robotic system that comprises different and distinct components tasked with process-

ing visual percepts, understanding dialogue and sequencing actions commensurate

with commands and tasks. An interesting question that is raised in chapters 2, 3

and 4 are how can some of the knowledge used for sense-making be learned?

In Part II, we take a deep dive into one specific kind of knowledge that is

often used in sense-making – social norms. Social norms are a form of common-

sense knowledge that are particularly elusive and difficult to computationalize, and

lack training data. Chapter 5 begins by outlining how norms associated with ob-

ject manipulation, discussed in Chapter 4, can be learned from Natural Language

Instruction.
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Chapter 6 considers how humans learn norms from observation and provides

a computational framework for how these norms can be learned automatically under

uncertainty. Chapter 7 extends the norm-learning model in Chapter 6 by scaling it,

while tackling challenges with complexity and uncertainty.

Although elusive, this normative knowledge is important to sense-making and

pervasive in human reasoning and interaction. Chapter 8 explores one specific set of

norms – “consent” – and considers how legal theory can help navigate these norms

and be incorporated into human-robot interaction research.

In Part III, we flip the discussion towards sense-breaking, which in a sense

is complementary to sense-making, and is the basis for creative problem solving.

Specifically, Chapter 9 focuses on human creative problem solving and dives deep

into its neuroscientific and psychological underpinnings. Chapter 10 uses the models

hypothesized in Chapter 9 and proposes a computational formalism, dubbed “Mac-

Gyver Problems,” for novelty discovery, anomaly detection through a sequence of

sense-breaking and sense-making mechanisms. In Chapter 11, I demonstrate a set

of algorithms for solving MacGyver problems.

Chapter 12 concludes the thesis.
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Part I

Sense-Making
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Chapter 2

Interpreting Pronominal

Expressions

Part I tackles how AI systems can better understand language and select how objects

can be used with logical reasoning over explicitly represented symbolic concepts.

In this chapter, I focus on the role played by logical sense-making in deci-

phering word meaning, specifically looking at pronominal anaphoric referring expres-

sions (e.g., “it”) and identifying what entity these expressions refer to in imperative

(Action-oriented) discourse.

2.1 Introduction

“If an incendiary bomb drops near you, don’t lose your head. Put it

in a bucket and cover it with sand.” [Hir81].

Anaphors are linguistic referring expressions whose interpretation depends on

objects and entities introduced earlier in a discourse [Mit14]. For example, in the

sentence: “pick up the parcel and give it to me,” the pronoun “it” is an anaphor that

relies on its antecedent “the parcel” for its meaning; both mentions likely pointing to

the same real-world parcel. Pronouns (and anaphors more generally) are used exten-

sively in dialogue and discourse and there are often multiple antecedent candidates

8



for an anaphor, leading to ambiguity, a problem that humans handle quite gracefully

[GS86]. Anaphora resolution is a central problem in natural language understanding.

Here, I focus on a subclass of this problem involving object pronouns when they are

used in simple imperative sentences (e.g., “pick it up.”).

But, how do we, humans, use “it” in imperative discourse? Consider the

following discourse between A and B in a scene that consists of a floor on which

there is a parcel:

a: Pick up the parcel.

b: Okay. [B picks up the parcel]

a: Open it

b: Okay. [B opens the parcel]

(2)

In order for B to follow instructions – first to pick up the parcel and then to

open it – B must interpret the definite referring expressions “the parcel” (a definite

noun phrase) and “it” an unstressed third-person pronoun (which we will henceforth

reference in bolded italics as it). This means B must identify the real-world object

that A is referring to in the discourse. Now, let’s say B is a robot that is equipped

with a “parcel detection” algorithm and therefore is capable of translating the lexical

content of the expression “the parcel” and is able to identify the single object on

the table that matches this linguistic description. However, what about it? The

pronoun it has no lexical or semantic content of its own, and is purely anaphoric,

that is it’s meaning is tied to a previous mention. It should be plainly obvious that

it in dialogue (2) refers to the same parcel. More specifically, it and “the parcel”

are co-referent with the same discourse referent. In the above discourse situation,

resolving it is quite trivial. However, things can get hairy quite quickly, as we will

see below:
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[Tabletop with a parcel and a mug]

a: Pick up the parcel that’s next to the mug.

b: Okay. [B picks up the parcel]

a: Open it.

b: Okay. [B opens the parcel]

(3)

In dialogue (3), there are two discourse referents (i.e., real world objects)

and two definite expressions – the parcel and the mug. Again, if B had a parcel

detector and a mug detector, it will be able to resolve these expressions. Resolving

it however is more complicated as there are multiple possible antecedent candidates.

Which object does it refer to? We know that the answer is probably the parcel,

and we might justify so by saying that mugs cannot be opened. 1 But, what if the

affordances offered by both objects match the issued imperative?

[Tabletop with a parcel and a mug]

a: There is a parcel on the table that I want.

b: Okay.

a: Walk over to the table. Carefully move the

mug out of the way. Then, grab it.

(4)

In dialogue (4), it could refer to the parcel, the mug or the table. All three

objects can technically be grabbed. However, we know that it refers to the parcel,

even though the parcel was not mentioned in the previous utterance or even the one
1We might also argue that the parcel is more salient as it is the object of an imperative sentence

(where the subject is implicit), whereas the mug is simply part of the prepositional phrase.
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before. It seems that the parcel was the most salient item, and we might be able to

interpret the discourse as a sequence of instruction for grabbing the parcel, allowing

B to keep its eyes on the prize, namely the parcel. In some sense, A’s communicative

intent was to request B to pick up the parcel. But, can it refer to items not the

central or most salient item in the discourse?

[Scene: Tabletop with a parcel and a mug]

a: [pointing to the mug] I want that mug. Pick up

the mug and put it in the parcel

b: Okay. [B puts the mug inside the parcel]

a: Bring it to me.

(5)

In (5), we have two it mentions. First, occurs at the first utterance where it

refers to the mug as there is only one antecedent. However, the second it occurs in

the bring imperative and has a slightly different antecedent. Here, it refers to both

the parcel and the mug (or the mug inside the parcel). B cannot simply assume that

it only refers to the mug because doing so would result in B removing the mug that

it just placed in the parcel. Moreover, there is no antecedent linguistic mention of

the parcel-mug combo, which makes resolving it more difficult as the pronoun itself

has no semantic content to help with interpretation. This missing antecedent notion

can be further complicated, as follows:
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a: Open the front door. There is a surprise

waiting for you.

b: Okay. [B opens the front door, and notices a parcel

on the mat. A sees B noticing the parcel and B knows

that A is watching him.]

a: Go ahead and bring it in.

(6)

Once again, in (6), it refers to the parcel and there is no linguistic mention

of any parcel.

To summarize, the unstressed third-person pronoun it , although seemingly

simple, does not inherently contain any semantic or lexical content of its own and

derives its meaning either explicitly from antecedents or implicitly from other modal-

ities. What makes it resolution so interesting and challenging as a phenomenon to

theorize about is the variety of ways in which it can be used. Here we reviewed a

number of considerations that must be accounted for in a theory that explains the

production and comprehension of referring expressions such as it . This is only the

tip of the iceberg of the different ways it is used, which can additionally include

pro-sentential (e.g., “Donald Trump did not tweet today. It caused a panic on Fox

and Friends”), pro-verbal usage (e.g., “stop doing it !”), and non-referential (e.g., “It

is raining.”), to name a few. An it-Theory must be able to account for having to (1)

select one from multiple antecedent candidates, (2) find the correct antecedent at a

position earlier in discourse before the most recent mentions, (3) select antecedents

that could be from different syntactic categories, (4) resolve references without ex-

plicit linguistic antecedents, and (5) handle discourses comprising a plurality of it ’s

each potentially tied to a different discourse referent.

While the examples presented above are helpful to understand the challenges

in resolving it , they are not exactly how humans speak to each other. We do not
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speak in full, clear, perfectly-paced, optimally-packaged sentences, but instead we

produce fragments called “turn construction units” (TCUs), and interact in a con-

versational “ping-pong” game2 organized as adjacency-pairs [dRng]. Moreover, there

are numerous umms, pauses, stresses, overlaps, repairs and interruptions that make

the conversation (if transcribed more carefully) look less like the examples above and

more like this one below3:

33 *H: A:sk him if the REP is out.

34 (0.8)

35 *CC:Is the REP out? (0.6)

36 (0.5)

37 *C: That’s affi::rmati::ve,

38 (31.9)

39 *P: Carnarvon, Gemini-5, the preliminary look, it’s still drifting out a

40 little bit, looks like it got about 5.8 feet..

First, we can see that some of same challenges noted above when resolving

it also appear in this real human communication data. Clearly, the parties are

saying much more than what is being captured in my earlier parcel-examples, and

this additional information could be crucial for resolving anaphoric expressions as

they might suggest topical and salience shifts. In this dissertation, I do not explore

these more naturalistic issues, choosing instead to simplify and abstract the question

of what sorts of cognitive mechanisms might be needed to resolve referring expres-

sions. This would be a view that is decidedly outside of the purview of Conversation

Analysis (CA) [HK17], a rich research tradition which places more emphasis on the

data itself and pushes for a more inductive inquiry driven by raw, but fully anno-

tated, natural conversations. My focus in this thesis is on the cognitive mechanisms

underlying comprehension and production of referring expressions, which in some

sense is more aligned with psycholinguistics and computational linguistics and less

so with CA. Nevertheless, I hope that my discussion will not have precluded any
2A metaphor that emerged from discussions with J.P. de Ruiter.
3Many thanks to Saul Albert for this transcription of Gemini-V air-to-ground communication

involving several parties in Canarvon, Houston and the space module.
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future possibility for an inductively driven CA inquiry.

2.2 Cognitive Science of Language and Anaphora

The current view of anaphora resolution is that it depends on context. Anaphoric

referring expressions are interpreted with respect to a discourse model which is built

up dynamically while processing a discourse and which includes objects that have

been mentioned (Mitkov 2014). This simple idea is actually quite profound and

suggests (1) multiple levels of representation, where there may be (2) top-down and

bottom-up influences between the levels. Moreover, processing is likely to be (3)

incremental, and is driven by (4) satisfying constraints to resolve temporary (5)

ambiguities that arise as a result of partial sentence comprehension. There is a

separate question about whether current theories about anaphora are (6) modular

or interactive theories and whether the processes proposed operate in (7) parallel

or serial. The examples I provided above are imperatives issued by a speaker to

a listener that the latter has to follow. Thus, (8) language in imperatives is not

merely a product but is an action or a speech act, which raises questions about

the intentions of the speaker in these examples. Another crucial question is when

(i.e., time-course) the anaphor is resolved – is it (9) predicted? In all these aspects,

there is an underlying question of how best to choose (10) the appropriate task.

Finally, there is a question of (11) how words and concepts – lexicon – are stored.

Below, I will present a glossary of sorts introducing and describing each of the above

eleven questions in the context of existing literature in word recognition, syntactic

and semantic parsing and perspective-taking. These various fundamental concepts

in modeling language comprehension apply with equal force to anaphora resolution,

as well.

Levels of Representation Language comprehension models usually de-

scribe processing within and/or between different “levels” of representations. The

term “levels” means different things to different people and here are a few interpre-

tations. First, a level can represent the type of knowledge or a knowledge system.
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In this interpretation, each level can be thought of as a system that comes packaged

with its own unique way of describing and representing knowledge, and its own set

of rules about this type of knowledge. As Jackendoff (2002) suggests, there might

be structure within a particular level, i.e., embedded internal levels (intra-level).

Second, a level can represent the continuum between perceptual (concrete) and cog-

nitive (abstract) knowledge. For example, a concrete perceivable acoustic signal for

a word might be at a different level from the abstract word or concept represented by

that signal. Third, a level can represent a construct that is a combination of other

levels. That is, while two representations might be at one level, their combination

might be at a different one. Fourth, levels can be viewed against cognitive psycholog-

ical notions of executive and cognitive control, goals, and motivations. In the word

recognition literature we can see two examples: Elman and McClelland’s (1988) in-

teractive activation model and Marsen-Wilson’s (1987) Cohort model. In the E&M

model, the levels of representation were lexical, phonemics and acoustics. In M-W,

the levels were messaging (or higher-level considerations), lexical, and phonemic.

Top-Down and Bottom-Up Processing The notion of levels is necessary

to discuss top-down and bottom-up effects. In general, top-down implies an influence

of a higher level on a lower level. When modeling coarticulatory influences, Elman

and McClelland (1988) considered how knowledge of word would influence the per-

ception of a phoneme – this is a top down effect as the lexical layer was consider

a higher level than the phonemic layer. The impact of acoustic information on the

phonemic layer, in this model can be considered a bottom-up effect. As I will discuss

later, these effects do not have to be symmetric.

Incrementality One important question in sentence comprehension is the

timing of when the sentence is processed – is it processed at the end after all the

bottom up information is received or is there some continual incremental processing?

By incremental processing I mean that all sources of info are processed as quickly as

they become available and the information that has been processed is then used to

process new upcoming information. In many of the models in word recognition as well

as sentence processing, higher-level representations are constructed and updated as
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each word is received. The notions of incrementality, levels, and top-down processing

set the stage to discuss an important class of language processing models: constraint-

satisfaction.

Constraint-Satisfaction Many language models view comprehension as a

constraint-satisfaction problem. Consider the Cohort model in which the goal of

the task was to recognize a word (e.g., “chair”) as quickly as possible. As one hears

the word, but before the uniqueness point, there is simply not enough bottom up

information to recognize the word. Yet, we recognize such words quickly and before

the uniqueness point. One explanation is that multiple types of knowledge (or levels)

serve as constraints that can assist in comprehension. None of the constraints by

themselves are sufficient to uniquely identify a word. However, what is particularly

powerful is the relationship between constraint-satisfaction and incrementality in the

resolution of ambiguity, which I will discuss next.

Resolving Ambiguity with Constraint-Satisfaction during Incremen-

tal Processing The concept of incrementality suggests that information is pro-

cessed in real-time as it is received. Crucially, that information is made available

to whomever (e.g., other levels) needs it, immediately. Higher-level representations

(e.g., message level, discourse models) are built up on the fly as new information

arrives. For example, when processing sentences on a word by word basis, as each

word is received, assigning a syntactic parse or semantic mapping or even other

functional mappings like resolving anaphors is made difficult by the existence of

temporary ambiguity because the entire sentence (or discourse) is yet to be received.

Constraints help with this temporary ambiguity problem because the knowledge in

the sources of constraints are made available immediately and can be used to incre-

mentally process the input (MacDonald, Pearlmutter, & Seidenberg 1994). Thus,

this constraint-knowledge immediately helps language disambiguation and compre-

hension in real-time.

Modularity versus Interactivity and Parallel versus Serial In language

comprehension, questions of representations are closely intertwined with questions

of process because processes compute or in some way work on representations (Gar-
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nham 2010). I have briefly touched on the computational aspects of “process” in

discussions about constraint-processing and incrementality. However, I have not yet

discussed the structural properties of these sorts of systems. The first concept in

this regard is the notion of modularity of a cognitive process, which captures ideas of

encapsulation, independence, and lack of interactivity with other processes. Modu-

larity cannot be discussed without first defining levels and representations and types

of knowledge. On the opposite end of modularity is interactivity, where levels of rep-

resentation influence each other, and sometimes even influence the inner workings

of the other (full interactivity). In word recognition research, E&M model (1988)

can be considered to be interactive in the sense of symmetry as the different levels

influenced recognition (both top down and bottom up directions). On the other

hand M-W’s (1987) Cohort model placed the bottom-up processing from the phone-

mic level in a privileged position (bottom-up primacy), thus only being partially

interactive. Interactivity does not necessarily mean that the observed effects need

to happen immediately; we can have delayed effects in both modular and interactive

theories as E&M demonstrated in their paper. A crucial point about modularity is

that if two processes A and B are said to be modular, then process A is not influenced

by the output of process B, even if B’s output is available. We also saw notions of

modularity in dual route systems where one handled most cases and another handled

exceptions. Modularity is an orthogonal notion to whether processes are parallel or

serial. The Frazier and Rayner model for handling garden path sentences was a

modular theory that was also serial. On the other hand, MP&S (MacDonald, Pearl-

mutter, & Seidenberg 1994) and TT&G (Trueswell, Tanenhaus & Garnsey 1994)

propose interactive models that are also parallel. Modular processes can occur in

parallel if they co-occur, but their results may be merged at some later point. M-

W’s Cohort model can be thought of a model that is partially interactive and serial

as there is a particular ordering of processes on the levels, but these processes can

influence each other. In general, the notion of parallel can suggest that two processes

are occurring at the same time. It is also possible to think about parallel in terms

of an intra-level phenomena in which multiple, say syntactic, parses are possible and
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processed in parallel.

Language as Action Language is used for communication, none more ob-

vious than the anaphora examples presented earlier in the context of imperative

dialogue. Not only is the sentence or speech act derived from a communicative in-

tent held by a speaker, but these communications are occurring in the real world with

referents available all around the interlocutors. This view is different from language

comprehension work discussed earlier and consequently necessitates different exper-

imental paradigms and models. Crucially, the language comprehension models must

be able to incorporate the speaker. For example, in the literature on resolving ref-

erential expression and perspective-taking, the visual world paradigm was used that

allowed for modeling a comprehender that assumes something about the speaker in

a shared space of ideas (common ground) (Tanenhaus, Chambers & Hanna 2004).

This sort of view is particularly relevant for interactive communication and anaphoric

reference resolution, and is exemplified by Goodman’s Rational Speech Act Theory

(RSA), which captures this essence in Bayesian models (Goodman 2016).

Prediction There are two ways to think about prediction. One view is as a

“builder” or “helper” in which prediction helps recognition of component parts. Lan-

guage processing does some work ahead of time (before receiving bottom up input)

and this work helps facilitate recognition. The alternative view is to consider the

role of prediction as that of a scientist. The mind is in the business of explaining,

so it forms hypothesis and then collects evidence (via percepts) to test and update

these hypotheses. In this view, the goal is to minimize prediction error. Comprehen-

sion is then the idea of interpreting a sentence to identify a linguistic signal given

some generative model. In Goodman’s RSA model, the comprehender uses a gen-

erative model for a speaker and the speaker uses one for the listener in a recursive

probabilistic programming paradigm.

Role of Task In all these above-mentioned concepts, there is an underlying

question of how best to choose the appropriate experimental task. A key component

to consider is the idea of “goals.” For example, in M-W the goal was to recognize a

word. Other goals can include “arrive at a single interpretation of a sentence,” or
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“disambiguate different antecedent candidates”, or “parse words into syntactic posi-

tions,” or more generally, “determine what the speaker is saying.” The task imposes

a goal to satisfy constraints. The relevant constraints that are activated then influ-

ence how the stimuli are processed. Thus, the results of any language comprehension

experiment have to be evaluated against the backdrop of what goals are imposed by

the task, which in turn have to be considered against what constraints are evoked.

Representing Concepts in a Lexicon The lexicon usually refers to the

stored knowledge about words. That said, this is a loaded concept and it is still

unclear what representations the lexicon contains and how lexical access is accom-

plished. The traditional view is one of a mental dictionary with rules and exceptions.

In this view, discrete entities corresponding to a word are typically accessed. A more

updated and modern view is that the lexicon is more like an index that provides

pointers or references to the various other memory stores of knowledge (syntactic

information, meaning, etc.) where the particular concept can be found.

2.3 Interpreting Anaphoric Expressions in an NLP Pipeline

Research into computational approaches for resolving anaphoric expressions (partic-

ularly pronouns) within the field of Natural Language Processing (NLP) is decades

old and quite extensive. Early computational approaches were largely non-statistical

and worked with syntactic and semantic parses of sentences to work out the mean-

ing of pronouns. More recently, as statistical machine learning and data-driven

approaches started gaining popularity, computational models have begun treating

anaphora resolution (pronoun disambiguation) as equivalent to co-reference resolu-

tion4, which in turn is handled by discovering patterns in the co-occurrence between

the pronoun and various antecedent candidates.

Interpreting pronouns has traditionally been thought to involve satisfying a

set of “constraints,” and if several antecedent candidates still remain, then choosing

a preferred one based on various “preference” factors [Mit14]. Typical constraints
4This approximation, in my view, is quite problematic as it is entirely disembodied from the

context in which the utterance and discourse are situated.

19



that have to be satisfied are: (1) morphological constraints (e.g., gender, number

and person agreement), (2) syntactic constraints (e.g., “John likes him” vs “John

likes himself”), and (3) semantic constraints (e.g., the infelicitous use of the pronoun

in “John doesn’t have a car. *It is in the garage.”). In addition to these constraints,

certain interpretations are generally considered dispreferred, a quality that can be

useful when we have to decide between multiple antecedent candidates that satisfy

all three constraints. Preferences are related to the use of commonsense knowledge,

the restrictions on type of argument a verb may possess, syntactic considerations

that prefer object pronouns with object antecedents, and finally salience [Mit14].

Salience is a particularly important one and is a widely exploited preference factor.

It has many different forms, two of which we discuss here are recency and repeti-

tion. Referents introduced in recent utterances are more likely to be referred to by a

pronoun than those introduced in utterances further back (recency). Referents that

have already been referred to frequently are more likely to be pronominalized than

those that have not (repetition). The various computation approaches avail them-

selves of these constraints and preferences, and in this section, I will discuss some

non-statistical and statistical approaches that make computational commitments to

some (but not all) of these constraints and preference factors.

2.3.1 Non-Statistical Approaches

Hobbs presented one of the earliest algorithms for pronoun resolution in [Hob78],

which exploits the syntactical and morphological constraints by searching syntac-

tic trees of current and preceding sentences in breath-first and left-to-right manner,

stopping when it found a matching noun phrase [Hob78]. This was largely consid-

ered naive and is generally unable to handle it resolution when there are multiple

candidates such as those in my example earlier. Hobbs’ subsequent “semantic” ap-

proach (complementing his syntactic approach) consideres the role of word meaning

and suggests that making logical inferences over an extended set of concepts in

knowledgebases may be helpful in disambiguating pronouns.

Lappin and Leass introduced in [LL94] a more sophisticated algorithm that
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Figure 2.1: Consider instructing a robot the following: “Pick up block1. Put it on
block2. Pick up block3. Put it on block1.” Which block does the second “it” refer to?
This question is trivial for humans, but not so for many artificial systems.

maintains and updates a discourse model that tracks the salience of various men-

tioned referents based on recency and grammatical function. It is able to discover

mentions up to four sentences back. However, these early approaches do not rea-

son over other aspects of the discourse that could potentially be relevant. They are

unable to handle the examples (such as (4)) presented earlier.

2.3.2 Statistical Approaches

With the gaining popularity of statistical machine learning methods, some researchers

began using Bayesian methods to compute the probability p(a | p, f1 . . . fn), where

a is an antecedent candidate of a pronoun p and fi are features obtained from con-

straints and preferences [GHC98]. This method uses the Hobbs algorithm to identify

all possible antecedents and then uses a large corpus (Penn Treebank) to compute

likelihoods needed. More contemporary approaches aim to solve the sister-problem of

co-reference resolution using statistical and neural network based algorithms. Inter-

ested readers can find nice overviews of the evolution of this field in Mitkov ([Mit14])

and Ng ([Ng10]). The state-of-the-art systems are trained on large corpora and they

are able to recognize mention-pairs that are statistically related to one another.

However, many of these systems fail when presented with the simplest of

examples. Consider the simple example of the commanding a robot to move blocks

shown in Figure 1. This is trivial for us to resolve. But, as shown in Figure 2, Clark

and Manning’s system in [CM16], a leading deep neural network-based system, does

not produce the correct resolution of this example.

Extracting statistical patterns is insufficient because disambiguating pro-

nouns can require inference on world models that evolve through the discourse.
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Figure 2.2: Incorrect resolution of a current neural coreference system [CM16] on
the example shown in Figure 2.1.

Thus, it is unsurprising that many current co-reference systems do not resolve this

simple example because it is not the statistical relationships that undergirds dis-

ambiguation, but instead extra-linguistic knowledge. Some have proposed specific

representations to incorporate background knowledge needed to solve these more

“hard co-reference problems” [PKR15]. However, these systems still lack the ability

to reason about the discourse itself, which I will argue is necessary.

2.4 From NLP Pipelines to Interactive Communication

The computational approaches presented thus far treat natural language under-

standing as a modular and linear process, solely from either the speaker’s or lis-

tener’s/reader’s perspective, but not both. These computational models all sub-

scribe to Shannon and Weaver’s [SW63] model for communication. In this model,

information flows from the speaker to the listener unidirectionally, and comprehen-

sion occurs by decoding speech signals received at the listener. Pronoun resolution

approaches that rely on this model assume that disambiguation at the listener does

not need to consider the speaker, but just the properties inherently present in the ut-

terance data itself. Human communication, however, is not unidirectional and clean

in this manner. Instead, it is a highly dynamic and bilateral set of behaviors that

can influence the other and alter subsequent responses [NDRA10]. I now turn to

some approaches that directly incorporate this crucial joint speaker-listener aspect

of communication into their computational models.
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2.4.1 Givenness

First, it might be helpful to consider the notion of “givenness,” which can be thought

of as the cognitive informational status associated with a discourse referent along

the dimension of whether they are new or previously “given.” The level or degree

of givenness then tracks how these known items may vary along this dimension.

Referring expressions are used by the speaker not for new information but for items

already given. This generative (or speech production) view of givenness can be one

way to begin unpacking what referring expressions refer to what objects. Baumann

and Riester have argued in [BR12] that there are two ways one can look at givenness:

(1) as whether an item is given in the common ground, and (2) as whether an item

is in the listener’s consciousness.5 We will consider each view, in turn, below.

2.4.2 Common Ground

Stalnaker defines common ground as common knowledge that is mutually recognized

as such by the speaker and listener [Sta02]. It is generally understood that definite

referring expressions are based on information that is in the common ground [CM02].

The relevance of common ground on language production and comprehension has

been a subject of active debate (the perspective-taking debate), with some arguing

for the primacy of common ground [CM02, BSH18] and others arguing that speakers

produce referring expressions more from their own ego-centric perspective [Key07]

(see [BSH18] for a nice overview of this debate). While this debate is not entirely

settled, it is now generally agreed that common ground does play a role (at least to

some degree) in reference resolution. So what does the common ground contain?

A recent computational model by Goodman and Frank in [GF16] takes a

Bayesian approach for speech act comprehension and production that recursively

considers speakers and listeners in a probabilistic programming paradigm. In their

proposed Rational Speech Act theory (RSA) there are three interactive models - one

for a literal listener who interprets semantics of an utterance literally, one for a ratio-
5There is a third way, that I will leave out as it does not directly add to our discussion for object

pronouns.
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nal speaker who considers how a literal listener might interpret a referring expression

(based on its discriminatory strength), and one for a pragmatic listener who consid-

ers this speaker model when interpreting the referring expression. RSA has shown

to map onto human performance quite well in generating and interpreting definite

references. However, the highly contrived and artificial experimental setting severely

limits the findings and consequently the ecological validity of this approach. In the

case of pronouns, RSA is especially handicapped as there is no semantic content

in the pronoun for the literal listener to work with, which means that the rational

speaker has no utility function that it can use. In the case of definite noun phrases,

the rational speaker was able to use a utility function that captured the discrimina-

tory property of a reference. Without lexico-semantic information in it , it becomes

difficult to construct useable utility functions for the rational speaker. Without a

suitable utility function, the pragmatic listener has no likelihood information about

the speaker model.

An even larger challenge with RSA is that it is a computational level account

[MP76] and provides no guidance (beyond a superficial utility function) about the

types of information in the common ground or that are needed for resolving ref-

erences. That said, the use of Bayesian updates is a more powerful way to model

human-like communication than the Shannon and Weaver approaches espoused in

the previous section. de Ruiter and Cummins propose such a general model of human

communication in [DRC12] in which communicative intent is identified online dur-

ing the relevant utterance using prior knowledge along with new information. They

propose the AIRBUS model for inferring communicative intention rapidly using pre-

computed likelihood database. While promising, the model does not specify exactly

how it can be adapted into a language processing model that resolves pronouns.

Thus, while the notion of common ground is quite compelling as a way to

view and analyze givenness, current approaches have not directly addressed how

(from a process point of view) this common ground can be leveraged for pronoun

resolution.
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2.4.3 Consciousness and Cognitive Status

The other way to view givenness of an entity is by considering whether the listener

has that discourse referent in their consciousness at the time of hearing the utterance.

Gundel et al. in [GHZ93] proposed a framework for associating forms of referential

expressions with a presumed cognitive status of a listener. The framework comprises

of six hierarchically nested tiers of cognitive status. Each tier is cued by a set of

linguistic forms, for example the “in focus” or “focus of attention” (FoA) tier is cued

by the pronoun it .

As noted by Williams in [WS18], the GH framework interfaces nicely with

general pragmatic principles operative in language interpretation, such as Grice’s

Maxims [Gri75]. Thus, GH can facilitate interpretation in tasks such as the reference

resolution task. However, it is not a process model, so it cannot directly produce

a solution to a reference resolution problem. Williams adopted the GH-theoretic

framework into such an AI process model (computational model that can actually

perform a language processing task). Williams proposed an algorithm for navigating

the GH-Theoretic hierarchy to produce both the appropriate reference for a speaker

(generation) and the appropriate discourse entity (resolution).

Williams as well as others ([CPQ06, Keh00]) have employed the GH-Theoretic

framework to handle pronouns such as it by referring to discourse entities in the tier

called “Focus of Attention.” Crucially, they apply the anaphoric salience preference

of recency for populating the FoA. The most recent noun phrase in the previous

sentence is usually selected and included. As I have outlined, recency alone is not

sufficient in handling many other varieties of pronoun usage. There are many cases

where the most recent definite noun phrase is the incorrect one (examples (2), (3),

and (4)).

Thus, while these approaches show promise in that they provide more tangible

process models for resolving referring expressions, they are still lacking for a couple

of reasons: (1) their accounting for how discourse entities populate the cognitive

status groups is somewhat limited (e.g., recent noun phrases are placed in the focus
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of attention), and (2) there is limited accounting of common ground in that it is still

unclear how knowledge in the common ground is utilized in language processing.

When is the common ground used, what does it contain and how is the information

in it employed?

2.4.4 From the Common Ground to the Common Playground

Stalnaker noted in [Sta02] that all conversational moves are performed in relation

to the common ground. Common ground has traditionally been thought to contain

representations of information that is physically co-present, linguistically co-present,

as well as information about cultural or community membership that is likely to be

jointly known [CM02].

The perspective-taking debate largely centers around conflict between theo-

retical findings in [CM02] and empirical findings within a constrained visual world

paradigm (see [Key07]), and around conflicts even within these empirical findings.

The questions being addressed in these debates are centered around when, during

language processing, do speakers and listeners consider common ground and when

they consider their own egocentric (or privileged) ground. I do not intend to en-

ter into this debate in this essay, but instead nudge the discussions about common

ground away from questions of relevance and timing to ones of membership and na-

ture: what is actually contained in the common ground and how is it represented

and used?

First, consider the question of whether or not a piece of information is in the

common ground (membership). Brown-Schmidt suggests that [BSH18] prior research

adopted a limited, binary view of membership: discourse referents are either in the

common ground or not. Per Brown-Schmidt, recent research argues otherwise noting

that representations can be quite rich, suggesting that representation of entities in

the common ground are not binary but graded and probabilistic.

Second, with regards to what sorts of information is contained in the common

ground (nature) and how it can be used, Clark and Marshall note in [CM02] that

interlocutors maintain rich representations of their daily interactions in episodic
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memory. These representations, which form the basis of inferences about common

ground, include information about what happened, what was said, what was seen,

and by whom these events were experienced. However, in the name of experimental

control and tractability, empirical research adopted a simpler propositional stance

towards the common ground, limited to named discourse entities or some superficial

property (e.g., color, facial feature, height or shape). So, what are these richer

representations contemplated by Clark and Marshall?

I propose that the nature of common ground is that of a collection of logical

reasoners - that is the speaker assumes not only that the listener has access to a

certain set of facts or propositions about the discourse referents, but also assumes

that the listener has access to certain sets of inference mechanisms and situation-

independent inference rules, and therefore the ability to compute implicit facts, de-

termine satisfiability and entailment. This means that the information structure

used to resolve definite references look less like a passive common ground, and more

like an active and vibrant playground. The common playground is full of interesting

equipment (reasoners, inference mechanisms and rules) that can transform beliefs in

real-time as the discourse unfolds. Due to its dynamic nature, the common play-

ground allows the interlocutors to run simulations and see if antecedent candidates

make sense (i.e., are satisfiable). External cues and bases for mutual understanding

(e.g.,eye gaze and pointing, physical co-presence) can provide clues as to what as-

pects of the common playground are considered salient within the listeners mind and

therefore speak to the cognitive status of discourse referents. Specifically, a referent

might receive probabilistic determinations of its membership status to the focus-

of-attention-tier based on whether it “makes sense,” when placed in the common

playground. Stalnaker foresaw the possibility of this more active notion in [Sta02]

when he suggested that the common ground should account for rule-like inferences

and “salience of consequence,” but cautioning that “even if I see that something

follows, I may not be sure that you will or that you think that I will or ...”

In the next section, I present, with the help of an example, a brief sketch

of a potential model of pronoun resolution that incorporates this notion of a com-
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mon playground into a GH-theoretic setting, thereby unifying the two notions of

givenness noted earlier. In subsequent sections, I show how this model can be com-

putationalized and implemented in an artificial system.

2.5 Interpreting Anaphora by Sense-Making - An Overview

Language comprehension can be viewed as an incremental model-building and gen-

erative process (see [Kam81]) in which the listener must either perform (or at least

mentally simulate) the issued actions thereby changing the surround world (or sim-

ulated world). In doing so, resolving anaphors becomes a task of associating actions

with their parameters in a way that “makes sense” in this unfolding narrative. Lis-

tener’s resolution process is guided by the common playground, which in turn is

influenced by the listener’s own capabilities, expectations of the speaker (and if

relevant, other interactants), and the general normative climate and community ex-

pectations. I propose that listeners, when tasked with disambiguating it as part of

an imperative, must bind the issued action to one of a set of two or more antecedent

candidates, and then ask three sense-making questions: (1) can the listener perform

the desired action on an antecedent candidate, (2) should they perform the desired

action on the candidate, and (3) is the speaker intending for them to perform the de-

sired action on the candidate. Each of these three questions in turn spawn separate

reasoning mechanisms that can then attempt to answer them.

An example walk-through of the resolution process might make things a bit

more clear. Consider a scenario where A is cooking and B is A’s sous chef. In this

scenario, we can consider one of two situations: (1) A is washing dishes or (2) A is

mixing a salad. In both these situations, B is responsible for cutting some tomatoes.

In this scenario, A says to B, “ “Pick up the knife. Cut the tomato.” Once B has cut

the tomato, A says “pass it to me.” It becomes immediately clear that it resolves to

the knife in situation (1) and to the cut up pile of tomatoes in (2)6. How would B
6One could argue that this is not felicitous as the chopped pile is really a plurality of tomato

pieces and A would say “pass them to me.” But, this is a debatable point as it is possible that A
could say “pass it to me” as they are considering ingredients as a whole mental concepts.
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resolve this?

We can consider three reasoners (one for each sense-making question noted

earlier): (1) an affordance reasoner for evaluating the can question, (2) a normative

reasoner for evaluating the should question and (3) a speaker intent reasoner for

evaluating the intent question. When activated, the three reasoners come pre-loaded

with some situation-independent knowledge. For example, the affordance reasoner

comes with some rules about effect of actions, inertia axioms and some common sense

physics laws about the actions relevant to the discourse (e.g., objects cannot be in

two locations at once, one cannot pick up something one is already holding, etc.).

The normative reasoner might come pre-loaded with rules about normative functions

of objects (e.g., knives used for cutting, tools can be washed, edible items can be

incorporated into a meal, etc.). Speaker intent reasoner might come pre-loaded with

rules about communicative intent and preferences of speakers (e.g., objects are more

relevant to a speaker if they will help a speaker, and speakers do not intend for

listeners to pass them irrelevant things).

During processing, common situation-specific facts about the object candi-

dates and scene information is provided into each of the reasoners. Prior to re-

ceiving the situation-specific facts, the reasoners are incomplete and cannot be run.

However, once situation-specific facts arrive, the reasoner can generate satisfiability

results. Using appropriate non-monotonic reasoning methods, we can compute, for

each object candidate, the likelihood that its inclusion into the reasoner will result in

satisfiability. We can then probabilistically combine these results from the reasoners

as pieces of evidence that can be used to arrive at probability distribution over the

discourse entities.

While the situation-independent knowledge (rules and facts) might be dif-

ferent for each reasoner, what is common across all the reasoners are the situation-

specific facts. What allows us to tie the results from all the reasoners together is

that they are all reasoning about an action-object relationship, i.e., the relationship

between action (issued in the imperative) and objects (antecedent candidates). I

implemented such a system using the language of Answer Set Programming, details
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of which follow.

2.6 Contributions to Pronominal Anaphora Resolution

Consider these three examples (including the one presented in the previous section),

all situated in a kitchen where a robot is assisting a human with a cooking task:

a: Pick up the [knife]k. Cut the [tomato]t. Put

itk,t down.

b: Okay.

(7)

a: Pick up the [knife]k. Cut the [tomato]t. Put

itk,t,b in the [bowl]b.

b: Okay.

(8)

[Speaker context - A:Washing dishes, B: Cooking]

a: Pick up the [knife]k. Cut the [tomato]t. Pass

itk,t to me.

b: Okay.

(9)
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In each of these cases, the disambiguation of “it” requires one to consider not

just the statistical relationships (like those inferred by the coreference systems) or

static and timeless bits of commonsense knowledge (like those used in tackling WSs),

but contextual information available to an agent that is situated and embodied in

an environment. It is unclear what types of knowledge or reasoning capabilities are

needed. In the most general case, the problem is very hard and been the subject

of research for decades [Hob78, LL94, Win80]. However, in the narrower case of

imperative dialogue we can simplify the problem by focusing on the cause and effect

relationships associated with performing actions issued by the speaker.

The goal of this chapter is to unpack this problem of situated or embodied

anaphora resolution. We focus on object pronouns (like “it”) as used in imperative

utterances within a larger discourse. We view natural language comprehension as

an incremental model-building and generative process [Kam81] in which the listener

must either perform or simulate the issued actions thereby changing the surrounding

world. In doing so, resolving anaphors becomes a task of associating actions with

its parameters in a way that “makes sense” in this unfolding narrative. Specifically,

the contributions are:

1. (Problem Characterization) We introduce the general class of situated

anaphor resolution problems in imperative discourse. We characterize these

problems by providing a set of exemplary problems and some insights into

what makes them particularly special and distinct.

2. (Proof of Concept)We construct a proof of concept system using Answer Set

Programming and Dempster-Shafer theory for solving this class of problems.

The system can resolve the ambiguous anaphors in 7, 8 and 9. We present a

detailed walk-through for (5).

3. (Reasoning Characterization) We articulate some general and domain-

independent types of reasoning as well as architectural capabilities needed to

solve these problems.
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2.7 Solving Pronominal Anaphora Problems in Impera-

tive Discourse

2.7.1 Overview of a Proof-of-Concept System

To solve situated anaphora problems, a listener agent must reason about extra-

linguistic information obtained as a result of its embodiment (i.e., sensory-motor and

bodily capabilities of the agent) and its situatedness (agent interactions in context

with its environment, which includes other agents). The agent’s decision making

is guided by the mutual knowledge shared with its interactants, which in turn is

influenced by the agent’s own capabilities, expectations of its interactants and general

normative expectations of the society in which the agent is situated [CM02].

We propose that when tasked with disambiguating an anaphoric object pro-

noun as part of an imperative (e.g., “pass itknife,tomato to me.”), the agent must bind

an action to one of a set of two or more object candidates. To do so, it must

reason about three different aspects over and above syntactic considerations, which

together form the mutual knowledge, namely:

1. Plausibility: Can it perform the desired action on an object candidate?

2. Normative: Should it perform the desired action on an object candidate?

3. Speaker Intent: Is the speaker intending for it to perform the desired action

on an object candidate?

We formalize these notions by suggesting that these three aspects or reasoning

modes can be structured as microtheories and represented as answer set programs.

Reasoning within these microtheories can happen in parallel with each reasoner re-

turning uncertainty measures for each object candidate. We propose then combining

uncertain evidence obtained from these theories using Belief-theoretic notions of ev-

idence combination. Belief theory (a subset of which is Demspter-Shafer theory)

generalizes Bayesian probability theory and provides some unique advantages over

Bayesian updates to modeling epistemic and subjective uncertainty. Moreover, it
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has a rich history of application in sensor-fusion networks, which the proposed proof

of concept system is modeled after.

In the next section, we walk through a demonstrative example in more detail.

But, first, we provide some background on Answer Set Programming and Dempster-

Shafer theory and provide some intuition for why they might be suitable frameworks

for resolving situated anaphors.

2.7.2 Mathematical Preliminaries

2.7.2.1 Answer Set Programming.

Answer Set Programming (ASP) is a knowledge representation language useful for

commonsense reasoning, especially in presence of incomplete information, defaults,

exceptions and inductive definitions [Bar03a]. A logic program Π is a set of rules of

the form:

L0| . . . |Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln

Where Lis are literals in the sense of classical logic and the not represents

negation-as-failure. The left and right hand sides of the rule are called the head

and body of the rule, respectively. Either one of head and body can be empty.

When the head is empty, i.e., k = 0 and the L0 = ⊥ the rule is called an integrity

constraint. When the body is empty, the rule is called a fact. Intuitively the above

rule means that if Lk+1, . . . , Lm are true and if there is not proof that Lm+1, . . . , Ln

are true (i.e., can be safely assumed to be false), then one of L0| . . . |Lk must be true.

The semantics of ASP is based on the stable model semantics of logic programming

[GL90b].

ASP serves as a suitable language with which to represent knowledge in the

proposed microtheories for solving situated anaphora resolution problems, for several

reasons. First, ASP allows non-monotonic reasoning, that is adding more knowledge

can change one’s previous beliefs, a mode especially true of situated reasoning when

the world state and context can change and evolve. Second, because ASP allows
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for negation-as-failure (not Li) and classical negation (-Li), default rules can be en-

coded, which as we will see, allows for encoding complicated cases where, for example,

certain actions are not permissible if there is no reason to think they are not forbid-

den. Third, ASP allows for what are known as choice rules. In addition to literals,

the head of the rule can contain cardinality constraints of the form l{L0, . . . , Lk}u

in which l, u are integers and explicitly allow the encoding of choices. Finally, we

will need to be able capture dynamic systems when reasoning about actions and

ASP, through its implementation as an incremental logic program which allows for

capturing knowledge accumulating over increasing time steps [GKK+08]. For this

chapter, we use ASP implementations in clingo and iclingo, which provide both

grounding and solving capabilities.

The language of answer set programming is very expressive allowing us, under

brave and cautious reasoning, to express every property of finite structures that is

decidable in the complexity classes ΣP
2 and ΠP

2 , respectively [EGM97, FL07].

2.7.2.2 Dempster-Shafer Theory.

DS-Theory is a measure-theoretic mathematical framework that allows for combining

pieces of uncertain evidential information to produce degrees of belief for the various

events of interest [Sha76] . In DS-Theory a set of elementary events of interest is

called Frame of Discernment (FoD). The FoD is a finite set of mutually exclusive

events Θ = {θ1, ..., θN}. The power set of Θ is denoted by 2Θ = {A : A ⊆ Θ}.

Each set A ⊆ Θ has a certain weight, or mass associated with it. A Basic Belief

Assignment (BBA) is a mapping mΘ(·) : 2Θ → [0, 1] such that
∑

A⊆ΘmΘ(A) = 1

and mΘ(∅) = 0. The BBA measures the support assigned to the propositions A ⊆ Θ

only. The subsets of A with non-zero mass are referred to as focal elements and

comprise the set FΘ. The triple E = {Θ,FΘ,mΘ(·)} is called the Body of Evidence

(BoE). For ease of reading, we sometimes omit FΘ when referencing the BoE. Given a

BoE {Θ,FΘ,mΘ(·)}, the belief for a set of hypotheses A is Bel(A) =
∑

B⊆AmΘ(B).

This belief function captures the total support that can be committed to A without

also committing it to the complement Ac of A. The plausibility of A is Pl(A) =
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Figure 2.3: Approach for resolving situated anaphors. Each of the three proposed
reasoning modes are encoded as microtheory templates, filled with situational in-
formation by a consultant and solved using a reasoner (e.g., answer set solver).
Uncertainty measures are computed over the set of object candidates and combined
to return the best guess.

1−Bel(Ac). Thus, Pl(A) corresponds to the total belief that does not contradict A.

The uncertainty interval of A is [Bel(A), P l(A)], which contains the true probability

P (A). In the limit case with no uncertainty, we get Pl(A) = Bel(A) = P (A).

DS-Theory extends Bayesian theory in several ways, allowing for some capa-

bilities that are suitable for our purposes. First, it allows for assigning probabilistic

measures to sets of these hypotheses (not just individual ones), including the set

of all hypothesis. This allows DS-Theory to consider missing and ambiguous infor-

mation, which is helpful when there is evidence that an anaphor could resolve to

more than one object candidate. Second, DS-Theory does not require assuming any

prior distributions over object candidates, which is useful when priors are difficult

to justify. Bayesian and DS-theories do share many commonalities and DS-theory is

often viewed as being a generalization.

2.7.3 Detailed Walk-through of an Example

Consider the discourse D1 from (5). In the scene, the speaker is performing a [wash-

ing dishes/cooking] task and is looking to have the robot use a knife to cut the

tomato and then to pass over the [knife/tomato] once it is done. Below is the dis-
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course comprising three utterances, as follows:

Pick up the [knife]k.

Cut the [tomato]t.

Pass itk,t to me

We propose a knowledge representation scheme and resolution approach im-

plemented through a resolver architecture as shown in Figure 2.3. Specifically, we

consider three consultants, one for each reasoning mode. The consultants instanti-

ate and run a reasoner, and later compute uncertainty metrics for object candidates.

Each reasoner is an ASP solver that operates on a microtheory which is a grounded

logic program. The consultants maintain partial or incomplete microtheories (mi-

crotheory template) that are domain-independent. During resolution, the consultants

“fill-in” the missing facts and rules in order to be able to complete reasoning. The

microtheory templates are not solvable logic programs as they are not sufficiently

ground, but merely serve as a general blueprint for a consultant to flesh out. In the

next section, we will discuss properties of these templates in more detail, but for

now, we will look at specific microtheories for our running example.

Once reasoning has been performed, each reasoner returns, to its correspond-

ing consultant, answer sets (if available) that are stable models consistent with the

information that the agent has used in reasoning. Thus, each reasoner answers the

question of whether a set of facts relating to the discourse “makes sense” from a plau-

sibility or normativity or intent point of view, depending on the consultant. The

consultant defines a DS-theoretic mass function over these models, which in turn

allows the consultant to build a BoE (E) over the objects of interest. We will now

look at each microtheory for (5) in more detail.

2.7.3.1 Plausibility Microtheory.

The plausibility microtheory contains knowledge for determining if an action re-

quested in an utterance can be performed in relation to an object, given the agent’s

action capabilities and the current situation. We use an incremental answer set pro-
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gramming paradigm as it is reasoning with action dynamics. First, we establish a

program base that incorporates a set of facts true of the agent’s (initial) current

situation in its interaction with a human (named “commX” or “commander X”)

% For incremental mode iclingo

#include <incmode>.

#program base.

% Percept types

is(obj1,object).

is(obj2,object).

is(obj3,scene).

is(obj4,loc).

is(obj5,person).

is(self,loc).

% Percept names

has(obj1,name,knife).

has(obj2,name,tomato).

has(obj3,name,kitchen).

has(obj4,name,table).

has(obj5,name,commX).

% Fluents

init(has(obj1,loc,self)).

init(has(obj2,loc,table)).

% Initial state axiom

holds(F,0):- init(F).

% Basic action definitions

action(pickup(X)) :- is(X,object).

action(putdown(X)) :- is(X,object).

action(pass(X,Y)) :- is(X,object),is(Y,person).

The next step is to GENERATE a set of action occurrences using ASP choice

rule syntax, as follows:
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#program step(t).

%GENERATE

{ occ(A,t) : action(A) } = 1.

The syntax states that at any given time instance ’t’, one and only one action

occurs from the set of possible actions. We can then define the effects of our actions

and various action-related axioms.

%DEFINE

% Effect of action occuring

holds(has(X,loc,self),t) :- occ(pickup(X),t-1).

-holds(has(X,loc,table),t) :- occ(pickup(X),t-1).

holds(has(X,loc,table),t) :- occ(putdown(X),t-1).

-holds(has(X,loc,self),t) :- occ(putdown(X),t-1).

holds(has(X,loc,Y),t) :- occ(pass(X,Y),t-1).

-holds(has(X,loc,self),t) :- occ(pass(X,Y),t-1).

% Inertia axioms

holds(F,t) :- holds(F,t-1), not -holds(F,t).

-holds(F,t) :- -holds(F,t-1), not holds(F,t).

% Commonsense laws

% Objects cannot be in two locations at once.

-holds(has(X,loc,Y),t) :- holds(has(X,loc,Z),t),is(Y,loc),

Y!=Z.

Once, the axioms are defined we use the integrity constraint syntax of ASP

to represent various action requirements and various situations that do not make

plausible sense.

%TEST

% Cannot pick up something you are already holding

:- occ(pickup(X),t), holds(has(X,loc,self),t).
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% Cannot pick up something when holding something else

:- occ(pickup(X),t), holds(has(Y,loc,self),t).

% Cannot put down something you are not holding

:- occ(putdown(X),t), -holds(has(X,loc,self),t).

% Cannot pass something you are not holding (on the table)

:- occ(pass(X,Y),t), holds(has(X,loc,table),t).

% Cannot pass if recipient already has it

:- occ(pass(X,Y),t), holds(has(X,loc,Y),t).

#program check(t).

:- query(t), t<maxlength.

#const maxlength=5.

The #program check(t) operation provides a termination of the program,

which in this case is after five steps, set by the maxlength constant. This microtheory

is essentially a planning microtheory defined over a short time horizon of five steps.

2.7.3.2 Normative Microtheory.

The normative microtheory contains knowledge for answering the question of whether

an action should be performed on an object candidate. This microtheory shares many

common features with the plausibility microtheory including the types of fluents and

static predicates that are used such as is(X,Y ) and has(X,Z, Y ). These predicates

are intentionally quite general and are designed to be representative of a high level

language that a situated agent can use [BLS17]. A crucial difference between the nor-

mative microtheory and the plausibility microtheory is the choice rule in the “GEN-

ERATE” part, and more specifically, the special predicate (has(A, permissible,X))

that is used therein, as shown below
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%GENERATE

has(obj5,is_doing,(washing_dishes;cooking)) = 1.

{ has(A,permissible,X) : is(A,action_verb),is(X,object),

is(S,person),has(S,uttered,A) } = 1.

The normative microtheory also has an additional choice rule associated with

the task context of washing_dishes versus cooking. The task context choice rule

is meant to allow the program to consider what would happen in different contexts.

However, we anticipate that in real-world situations, the context is set and not

necessarily choose-able in this manner. Nevertheless, we provide this as a choice rule,

so we can compare performance across two different contexts. We can then define

and test “permissible” actions against what is deemed forbidden or in some instances,

what is not shown to be not forbidden, depending on the normative requirements at

play.

%DEFINE

% Forbidden to pass something that is not

% a dish to someone who is washing dishes.

has(X,function,tool) :- has(X,used_for,cutting).

has(cooking,requires,X):- has(X,used_for,eating).

has(washing_dishes,requires,X):- has(X,function,tool).

-has(A,forbidden,X) :- has(S,is_doing,T),

has(A,permissible,X), has(T,requires,X).

%TEST

:- has(A,permissible,X),not -has(A,forbidden,X).

2.7.3.3 Speaker Intent Microtheory.

The speaker intent microtheory contains knowledge for answering the question of

whether the action on an object candidate was what the speaker intended for the
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agent to do. Once again, this microtheory shares many of the same predicates

with the normative and the plausibility microtheories. And, as with those other

two theories, what is unique is the special predicate used in the generate step

(has(A, speaker_intends,X)).

%GENERATE

%Task that the speaker is doing

has(obj5,is_doing,(washing_dishes;cooking)) = 1.

{has(A,speaker_intends,X) : is(A,action_verb),is(S,person),

has(S,uttered,A),is(X,object)} = 1.

The potential set of action-object pairings suggested by the speaker’s utter-

ance are constrained by what actions might be relevant to the task that the speaker

is performing.

%DEFINE

has(X,nextAction,A) :- has(X,loc,self),is(X,object),

has(A,name, putdown).

has(X,nextAction,A) :- has(X,loc,table),is(X,object),

has(A,name,pickup).

% When something is split, it is made up of multiple parts

% Speaker unlikely to use "it" when referring to

% multiple object

has(X,number_parts,multiple) :-

has(X,physical_integrity,split),is(X,object).

-has(A,speaker_intends,X):-

has(X,number_parts,multiple),

has(A,verb_pronoun_ref,W),

is(W,pronoun),has(W,name,it),is(X,object),

not has(A,speaker_intends,X).

% speaker prefers the robot to perform the next action

-has(A,speaker_intends,X):- not

has(X,nextAction,A),is(A,action_verb),is(X,object), not
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has(A,speaker_intends,X).

% relevance of an object to a speaker if it helps the

% speaker

has(X,function,tool) :- has(X,used_for,cutting).

has(cooking,requires,X):- has(X,used_for,eating).

has(washing_dishes,requires,X):- has(X,function,tool).

has(X,relevant_to,S) :- has(S,is_doing,T),

has(T,requires,X), is(S,person).

%TEST

% speaker does not intend for the robot to pass

% it irrelevant things.

:- has(A,speaker_intends,X), not has(X,relevant_to,S),

has(S,uttered,A).

2.7.3.4 Combining Evidence with Dempster-Shafer Theory.

We are reasoning about whether or not certain action-object pairings make sense.

Thus, if the set of candidate objects is O = {o1, . . . , on}, we can define the DS-

theoretic frame of discernment Θ = O (e.g., Θ = {obj1 , obj2}). Now, each microthe-

ory potentially outputs a set of answer sets, A = {A1, . . . , An}, where if A = ∅ then

the microtheory is unsatisfiable. We know that each answer set contains a set of

ground predicates Ai = {p1
i , . . . , p

k
i } including exactly one special generative pred-

icate p∗i . A generative predicate p∗i is a predicate that is applied via choice rules.

The special generative predicate is a domain general aspect of a reasoner that allows

an agent to link an object with an action in a way that conforms to the needs of

the particular reasoner. For each of our three aforementioned reasoners, we have

one special generative predicate. For the plausibility reasoner, p∗i = occ(a(o), t),

where a is an action, and o is an object from O (e.g., occ(pickup(obj1), 1)). For

the normative reasoner p∗i = has(a, permissible, o) and for the speaker intent rea-

soner p∗i = has(a, speakerintends, o). We can say that a grounded special generative

predicate contains an object o ∈ O when o is a term (or a nested term) in the pred-
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icate. Each grounded special generative predicate contains one of the n candidate

objects from O. Since the special generative predicates are introduced via choice

rules requiring them in a reasoner, each answer set Ai will have a p∗i , unless A = ∅.

We can now define our mass function of some subset B ⊆ Θ, B 6= ∅ as being

the following:

mΘ(B) =



N
|A′| ∀b ∈ B, ∃i, such that p∗i ∈ Ai and

p∗i contains b, does not contain b′ /∈ B

0 otherwise

Where A′ ⊆ A refers to those answer sets that contain the desired action

verb, and N is the number of answer sets Ai ∈ A′ that satisfy the specified criterion.

The reasoning consultants compute these mass functions and return a BoE E that

contains the computed mass functions for the focal elements For example, if there

are two object candidates Θ = {o1, o2} and a reasoner returns three answer sets

A = {A1, A2, A3}, with A1 containing o1, A2 containing o2 and A3 containing both

object candidates, then the BoE will contain masses m({o1}) = 1/3,m({o2}) =

1/3,m({o1, o2}) = 1/3. The evidence from these sources can be combined using

the Dempster’s rule of combination, which aggregates evidences or confidence values

from different sources, but within the same frame of discernment. The results from

computing the fused uncertainties for each of discourse examples (3), (4) and (5) are

shown in Table 2.1.
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2.8 General Properties

In this section, we discuss several general, domain-independent aspects of the pro-

posed approach.

2.8.1 Class of Situated Anaphora Resolution Problems

Thus far, we have presented a few examples of situated anaphora resolution prob-

lems.7 Discourses in this class of problems share the following features:

1. Each discourse consists of a set of utterances, at least one utterance being an

imperative. At least one imperative utterance contains at least one anaphoric

referring expression.

2. The discourse context contains, among other things, two or more candidate

antecedents to the at least one anaphoric expression. The antecedents could be

explicitly mentioned linguistic referring expressions or discourse entities (real-

world objects or cognitive concepts) being considered by the interlocutors as

part of the discourse.

3. Linking the anaphoric expression to one of the candidate antecedents requires

reasoning with extra-linguistic situational knowledge.

4. Executing an imperative (or mentally simulating it) during the discourse can

change the state of the world in a way that influences the interpretation of a

subsequent anaphor. That is, the interpretation of the anaphor is not merely

influenced by the semantics of a linguistic expression (as in WS), but by what

happens in the world as a result of incrementally interpreting (and executing)

each utterance in the discourse.
7Additional examples: (1) “Walk to the green door. Enter your passcode on the panel to open

it.” (2) “My pen fell under the bed. Grab that broom. Use the long end to get it out.” (3) “The
knife is on the chair. Pull it out. Grab the knife. Push it back.”
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2.8.2 Domain-Independent Aspects of the Reasoners

Each of the microtheories share a common structure as allowed by the GENERATE-

DEFINE-TEST methodology in ASP. In the English language, every simple imper-

ative utterance with an object pronoun has no overt subject (i.e., the subject could

be, as in ‘I would like you to ...’) and the verb is often in its bare form. This focused

structure allows us to consider specifically the relationship between just the action

verb and the object. In the case of pronoun use, the object is replaced by an object

pronoun such as “it.” From a representational standpoint we are only interested in

this relationship between action and object. This means we can pre-define useful re-

lationships between action and object for each of the reasoners and generally ask the

question if an action-object pairing makes sense from the corresponding reasoner’s

(or microtheory’s) perspective. If we let a be the action specified in the utterance,

and O represent the variable corresponding to the object pronoun, then we have

three general symbols, one for each reasoning mode, as follows:

1. Plausibility Reasoning: occ(a(O), t)

2. Normative Reasoning: has(a,permissible, O)

3. Speaker Intent: has(a, speaker_intends, O)

Moreover, many of the commonsense definitions shown in the code fragments

in the previous section for each of the reasoners are in fact domain-independent such

as the axioms of inertia in the plausibility reasoner, the rule associated with when an

action is not forbidden (-has(A, forbidden,O)) in the normative reasoner and the

rule relating to when an object is relevant to a speaker (has(O, relevant_to, S)) in

the speaker intent reasoner. In fact, we were able to model (3) and (4) in much the

same way as we did with (5).

We note that not only does this generality hold within a domain (like cutting

vegetables), it extends to other domains as well as in cases where it is possible to

incorporate several object pronouns in sequence, each referring to different objects,

as follows:
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Pick up the [ladle]l. Put itl in the [pot]p containing [soup]s. Stir itl,p,s.

Check if itl,p,s is mixed. Take itl,p,s out and wash itl,p,s.
(1)

2.9 Other Related Work

2.9.1 Coreference Resolution

Contemporary approaches aim to solve the sister-problem of coreference resolution

using statistical and neural network based algorithms. Mitkov ([Mit14]) and Ng

([Ng10]) provide nice overviews of the evolution of this field. The state-of-the-art

systems are trained on large corpora and they are able to recognize mention-pairs

that are statistically related to one another. However, many of these systems fail

when presented with situated anaphors, much like (1). Clark and Manning ([CM16])8

propose one such system that does not produce correct resolution of (1) (see Figure

2.2), (3), (4), (5) and all the examples provided in the chapter. Extracting statistical

patterns is insufficient because disambiguating situated anaphors requires inference

on world models that evolve through the discourse. Some have proposed specific

representations to incorporate background knowledge needed to solve these more

“hard coreference problems” [PKR15]. However, these systems still lack the ability

to reason about plausibility, normativity and speaker intent, which we argue to be

important reasoning modes in situated cases.

2.9.2 Pronoun Disambiguation

There have been parallel efforts in tackling the Winograd Schema Challenge and the

leading approaches employ a strategy of first selecting a format to represent com-

monsense factual knowledge, learning vast amounts of static commonsense knowledge

from online databases (ConceptNet, WordNet and CauseCom), and then performing

inference or classification with this knowledge [BHL+15, SVAB15b, LJL+16, GCS17].

However, these approaches do not consider the three reasoning modes we discuss.
8 https://huggingface.co/coref/ and http://corenlp.run/
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Also, it is unclear how the knowledge needed for performing this situated reasoning

can be acquired from these online databases.

In another line of work, Richard-Bollans et al. have suggested that speaker

intent, models of the situation, and choosing relevant entities are important con-

siderations that must be taken into account when resolving pronoun disambiguation

problems [RBGAC17]. They go on to propose the use of prototypes, plausible object

configurations in the scenario described, and generally deeper semantic knowledge

bases. While they do not provide a concrete proposal for addressing pronoun dis-

ambiguation using these principles, we agree with the basic premise that the type

of knowledge needed for resolving references in the real world are more than merely

formalizing knowledge from WWW datasets. We extend these ideas and suggest

that the reasoning needed must incorporate deeper notions of context, plausibility,

and normative standards.

2.9.3 Reference Resolution in Robotics

There has been considerable work in reference resolution, more generally, and in

applying various theories from cognitive science in order to use pragmatics [Sch14,

RBGAC17, Keh00, CPQ06, WASS16, WS16, VD16]. Unfortunately, much of this

work focuses on pragmatics as it pertains to processing effort and cognitive effect on

the agent, and less so on situational aspects of the agent’s surroundings. The models

that do unpack discourse context information have received a weaker computational

treatment.

When embodied in the real world, an agent must be able to discuss, rea-

son about and even perform actions on entities referenced in dialog, aspects that

are somewhat unique to situational anaphora resolution problems described in this

chapter. Accordingly, the agent must be able to create representations for those

entities and incorporate them into the reasoning process. This process is more gen-

erally termed reference resolution and there has been extensive research in addressing

how an agent might perform such resolution in the open world under conditions of

uncertainty [Keh00, CPQ06]. Recently, Williams et al. have proposed a computa-
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tional framework with which to resolve references to specific real-world co-present

objects by formalizing a linguistic framework called the Giveness Hierarchy (GH)

[WASS16, WS16] . However, the GH approach primarily performs syntactic disam-

biguation of pronouns (especially “it”) using notions of recency of usage. Thus, it

can resolve the references in certain WS correctly for example in (1), but not those

from (2), (3) or (4). Nevertheless, one key strength of this approach is that an agent

can represent a real world entity or percept abstractly, setting the stage for us to do

more advanced reasoning capabilities over these abstracted entities. For example, a

real world visual point cloud might be perceivable through an agent’s visual sensors.

This approach allows an agent to systematically tie this point cloud to an abstract

entity (e.g., the symbol “obj1”), but also link this abstraction to other perceptual

entities like the linguistic term “cup” and a haptic percept “heavy” and a cognitive

concept “my cup”.

2.9.4 Natural Language Understanding in Robotics

More generally, there is a vibrant research community exploring natural language

communication with robots. Tellex et al. provide a extensive and current review

of the current state of the art in both language understanding and language gen-

eration [TGKGM20].9 Despite tremendous progress, missing from current work is

importance of tracking the evolution of the discourse model as the language unfolds,
9An underlying assumption in much of this work is that language can only be understood when it

is grounded in the perceptual aspects of the world, an idea originally proposed by Harnad [Har90].
The argument, roughly, is that symbols and mental concepts must be “grounded” in perceptual
experience of the agent. The question of “symbol grounding” and whether or not symbols need
to be grounded is an open philosophical question. Sloman has argued that the notion of symbol
grounding is merely a rehashing of the philosophical idea of “concept empiricism,” the idea that
all concepts must have their basis, directly or indirectly in experience [SKCT06, Slo11]. Sloman
reminds us that Kant refuted this notion by noting that certain concepts (e.g., space, time, ordering,
causation) are needed to even make sense of experience. Sloman argues that certain concept can
be (partially) defined implicitly by their role in powerful theories. Here, I do not take a position
in this debate, but instead offer a cautionary slippery slope warning that a hard-nosed symbol
grounding view runs the risk of turning natural language understanding into a linear pipeline of
tasks from experiential percepts of text and audio into some representation of meaning, later to be
used by the robot to plan and act upon. Such a linear pipeline goes against decades of research
in how humans use language in dialogue and conversation, and how the process is not linear, but
interactive, and even seemingly upstream tasks require downstream operations – e.g., interpreting
ambiguous pronouns sometimes require reasoning about the actions and plans being talked about
in an utterance.
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particularly as it pertains to resolving references. Moreover, there is little to no work

on the impact of social norms on language understanding. As I have shown, humans

use norms and a range of implicit knowledge about actions and speaker intentions

to make sense of language, even at the reference resolution level.

As alluded to earlier, the relationship between low-level perception and higher-

level reasoning might be tight, and possibly symbiotic, so resolving ambiguities across

levels might need to occur jointly. Recent work by Thomason et al. [TPS+20] pro-

poses a dialog agent with some interactive capabilities and point in a promising

direction. In this work, the dialog agent learns meanings of words, including words

novel to the robot, through interactive multi-modal dialogue. The work provides

a technique for jointly learning semantic representations and perceptual groundings

for new concepts.

We are not aware of any prior approach that has been shown to be capable of

reasoning with extra-linguistic information (including normative knowledge) about

objects, when such information may be acquired in a situated manner from multiple

sensory capabilities of an embodied agent. Moreover, this extra-linguistic informa-

tion is typically mutual knowledge that is shared by the interlocutors, and includes

knowledge about the agent’s own capabilities, knowledge about other co-located

agents and general extant normative or community standards.

2.10 Some Limitations

There are still many open questions with this model, one of which is the selection of

a suitable model for speech production. The production model flips the script and

requires: (1) selecting an action-object combination, (2) selecting the set of reasoners

that the listener is likely to use, (3) for each reasoner selecting the set of situation-

independent rules that the listener is likely to use, (4) selecting the set of potential

antecedent candidates that the listener is likely to consider, and (5) running these

reasoners, producing probability distributions over the antecedent candidates, and

finally selecting the pronoun based on these distributions.
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Another question is how does this approach fit into the prior discussion about

common playgrounds and the GH-theoretic process models. We know from GH-

theory that objects in the FoA (focus of attention) can be felicitously referred to

by the pronoun it . I suggest that the reasoners provide a mechanism by which this

FoA can be populated, one that is more sophisticated than the use of the notion

of recency in current approaches. The FoA could contain just one item (e.g., a

MAP estimate from the probability distribution over possible antecedent candidates)

or could itself be a probability distribution. The reasoning architecture (i.e., the

common playground) then allows the speaker and the listener to populate their

respective FoAs. That said, it is still a bit unclear how reasoning can work alongside

other preference factors (e.g., salience) and constraints (syntactic and morphological)

that can influence anaphora resolution.

One key question is whether this approach is computationally tractable and

cognitively feasible. It appears that reasoning in this manner for each and every it

is cumbersome and arguably unnecessary. Do we really reason about each it in this

manner or do we use heuristics and shortcuts that generally work. One argument

might be that we do use these mechanisms as well as heuristics. We might do this by

using heuristics that allow us to quickly activate and select reasoners and inference

mechanisms (i.e., the interesting parts of the playground) via probabilistic inductive

inference and then subsequently perform logical inference. So, unlike prior statistical

approaches that learn relationships between noun phrases and pronouns, I suggest

that what is learned are relationships between imperatives and the underlying rea-

soning mechanisms, and that is what is activated during comprehension.

Although we propose three specific reasoning modes, we expect that there

are sub-classes of situated anaphor resolution problems that cannot be resolved with

just the three reasoning modes proposed. For example, if the imperatives in the

discourse represent not the intent of the speaker but of another in situations where

the speaker may simply be conveying a message or an order from, for example, their

superior or boss. In such cases, the agent would need the capability to reason about

intent of another beyond the speaker. Our approach is by no means limited to just
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these three reasoning modes, and it is subject of future work to explore when and

how these and other reasoning modes are triggered.

In this chapter, we did not address how these microtheory templates (partial

microtheories) are learned or how the agent acquires them. The question of learning

is an important one and there has been extensive research efforts in acquiring and

encoding knowledge from the WWW. However, situated anaphors present a unique

challenge in that much of the knowledge needed to resolve them might not be explic-

itly available in a dataset. Instead, this knowledge may be quite implicit acquired

by the agent throughout its lifetime. We are currently exploring how an embodied

agent might glean these implicit rules from experience.

We have presented the first steps towards resolving ambiguous references

by reasoning with situated information available to an agent when embodied in

an environment. One follow-on step for this research effort is to integrate these

capabilities into a cognitive robotic architecture and attempt to empirically evaluate

the system and the knowledge represented therein in real human-robot interaction

scenarios. One advantage of the proposed microtheories is the use of identifiers for

object constants that allow for the integration of multi-modal perceptual information

about the same entity to be aggregated and reasoned with and allows for the symbols

to be grounded in the robot’s sensory-motor system.

2.11 Conclusion

Artificial agents interacting with humans will need to be able to disambiguate anaphoric

expressions, which are used freely and frequently in discourse. To do so, we argue

that the agent must consider what it can, should and be expected to do in a situation.

In this chapter, we propose a knowledge representation scheme to formalize domain-

independent and situation-specific knowledge for each of these three considerations,

and a resolution strategy for using this knowledge to disambiguate object pronouns

in simple imperative sentences that are situated in real-world embodied discourse.

This work advances the state of the art in anaphora resolution by reframing the
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disambiguation problem from being only about mention-pairs, to also being about

the viability of the actions being considered as the world state evolves.
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Chapter 3

Interpreting Indirect Speech Acts

In this chapter, I build on the lessons learned from the previous chapter and study

how a similar sense-making architecture can be employed at the sentence-level. Here,

I consider a class of non-literal speech, termed Indirect Speech Acts (ISAs) that can

have an ambiguous intended meaning.

3.1 Introduction

Understanding natural language utterances inherently involves resolving ambiguity

associated with the meaning of linguistic expressions. Resolving linguistic ambigu-

ity involves choosing one amongst many possible meanings, at the word level, at

the sentence level, and at the discourse level. Word and sentence embeddings are

current topics of active research and focus on selecting suitable word or sentence rep-

resentations that best capture meaning. Current transformer architectures such as

BERT [DCLT18] are used to pretrain language representations so word and sentence

embeddings account for nearby linguistic context. These systems are based on two

key insights that we explore in this chapter. The first insight is that word meanings

(in the case of BERT) and span meanings (in the case of SpanBERT [JCL+20])

cannot be understood separate from their context, which in these cases is primarily

linguistic context. Using these contextualized language embeddings has led to state-

of-the-art performance in several downstream tasks. However, there is still the open
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problem of how to incorporate extra-linguistic context. Specifically, it is unclear

how to categorize and use knowledge derived from common sense knowledge about

how the world works as well as situational knowledge about aspects of the physical

environment in a systematic way for NLU.

The second insight is that the way context influences meaning can be entirely

captured statistically from data. That is, a word encountered together with context

in a particular way is likely to mean the same as the same word encountered in a

similar linguistic context. The assumption is that systems with sufficient training

data, or at least with powerful pretrained models are likely to interpret language

correctly. However, Cohen [Coh19] and others have argued that pattern recognition

by itself might be insufficient, and such an association might require logical reasoning

beyond learning statistical similarity.

Recent work by Sarathy et al. [SS19a], explored both these insights and ar-

gued that, for the task of coreference resolution (at least with respect to imperative

discourse), to interpret a pronoun an NLU system must reason about actions and

change, normative obligations and social aspects, and the intent of speakers. Knowl-

edge from situational context combined with background domain-general knowledge

is needed to be reasoned with. The key idea here was that meaning is derived from

choosing the interpretation that makes the “most sense” (not just in terms of statisti-

cal regularity, but in terms of coherence more broadly) given a variety of contextual

factors.

We are inspired by this key idea to explore how context and reasoning can

assist not only at the word level (as Sarathy et al. have done), but at the sentence

level. Specifically, we address the problem of how a listener can infer the intended

meaning of an utterance given contextual knowledge. Sometimes, as in Indirect

Speech Acts (ISAs), the literal meaning of a sentence (derived from the surface

form) can be different from its intended meaning [Sea75, Aus75, GL75]. For example,

the utterance “can you open the door?” has a literal meaning of an elicitation of

information from the listener regarding the listener’s ability to open the door – this

is because the utterance has the surface form of a question. And in fact, the speaker
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may in some cases be interested in whether the hearer is capable of opening the

door: if the hearer is physically disabled and the speaker is a caregiver, for example.

However, very frequently, the intended meaning of the utterance is a request that

the listener perform the action of opening the door, in which case the utterance is

an ISA. As this example suggests, the proper interpretation is guided by context.

Research has shown that ISA use is common in human-human communica-

tion [Lev01], as well as in human-robot task-based dialogues [WTNS18]1. The prob-

lem, however, is that ISAs are notoriously difficult to computationalize when their

interpretation is influenced by contextual factors. Unlike past approaches to ISA

interpretation, we incorporate a broader notion of context and extended reasoning

capabilities to reason about the speaker’s intent and beliefs.

Contributions: We provide a computational formalization of the (1) precon-

ditions, related to the speaker’s intentions and beliefs, that need to be satisfied for

determining if a surface form carries indirect meaning, (2) reasoning needed to infer

speaker beliefs based on domain general principles about the world (e.g., inertia),

expectations of linguistic alignment, and mutual knowledge and (3) representations

needed to assimilate factual contextual evidence available to the listener into the rea-

soning process. To make this work more tractable, we limited our focus to ISAs that

have an intended meaning of a request, while their surface forms could be a question

or a command. In the tradition of past work in computationally-aided linguistic

analysis, these formalizations are derived using examples from several task-oriented

dialogue corpora.

3.2 Approach

Our approach is based on two traditions. First, the tradition from computational

linguistics of building formal representations of linguistic phenomena from corpora,

guided by linguistic and cognitive scientific theories (See papers by Jiménez-Zafra

et al. [JZMMUL18] and Ilievski et al. [IVS18]). We emphasize that the model that
1People not only use ISAs but repair ineffective ISAs with other ISAs, supporting the idea that

humans have a strong preference for ISAs.
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we build from this corpus analysis is a cognitive scientific model, which builds on

theories from cognitive science and psycholinguistics as described in Section 3.3.

Second, the tradition of building explicit knowledge representation formalisms

along with reasoners capable of deriving meaning of natural language expressions

from their logical forms. Recent work in this tradition has been performed by Sarathy

et al. [SS19a], Sharma et al. [SVAB15a], and Wilske and Kruijff [WK06].

Combining these traditions, we perform a corpus analysis to extract archety-

pal utterances from a variety of corpora; this process includes a consensus annotation

of those utterance’s direct and indirect meanings, as well as of the context that in-

fluences that interpretation, as described in Section 3.2.1. Then we build a formal

computational model of the representations and reasoning required to perform those

interpretations, ensuring that the computational model performs a complete cover-

age of the archetypal utterances, as described in Section 3.2.2. The resulting model

is detailed in Section 3.3.

3.2.1 Corpus Analysis

We are motivated to perform a corpus analysis because of limitations in existing

corpora, which include dialogue act classification and intent recognition datasets,

e.g.: [LSS+17, SDB+04, JBC+98]. These corpora cannot be used as-is for reasons

shown by Roque et al. [RTSS20]: because ISAs are context-sensitive, ISA Schemas

need to be developed. These are data structures that are made up of an utterance

and two different context representations; in one of the contexts the utterance is

an ISA, and in the other context the utterance is not an ISA. However, these ISA

Schemas do not seem to be amenable to economy-of-scale authoring techniques such

as crowdsourcing, so some amount of expert authoring seems to be required. For

that reason, we used a corpus analysis approach suggested by Roque et al. [RTSS20]:

using real-world corpora to manually author ISAs. We proceeded as follows.

First, we obtained three existing corpora, selected to provide variation (speech

vs text, virtual-world vs real-world, human-human vs human-robot, navigation vs

construction) while retaining a focus on task-based communication: (1) SCARE cor-
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pus [SSBFL08] in which one person helped another person navigate through a virtual

environment, (2) Diorama corpus [BWTS17] in which one person directed a tele-

operated robot in arranging real-world items, and (3) Minecraft corpus [NCJH19],

in which one person directed another person in collaboratively building structures

in a virtual environment.

Second, we manually searched the corpora (15,000+ utterances in 50+ hours

of recordings) for pairs of human utterances with identical or very similar surface

form, and in which one element of the pair was an ISA and the other pair was not.

It was not necessary for the utterance to have been made by the same person, or

even in the same corpus, because any system capable of interpreting ISAs should be

domain-general. We found 20 such pairs in the corpus of 15,000 utterances, which is

consistent with Roque et al. [RTSS20]’s experience of obtaining a very small yield

of ISA Schemas when developing them using crowdsourced methods.

Third, having identified such pairs, we manually extracted the context details:

scene, dialogue history, roles, constraints, and whether the intended meaning was

indirect or direct. We identified the values of these parameters through consensus

annotation. The utterance, and the context parameter/value slots, are what make

up an ISA Schema. We consider these ISA Schema to be archetypal in the sense that

they represent the set of ISAs in the corpus, including the ones that are unpaired.

Our focus is on the paired ISAs, to investigate the ways that varying context varies

interpretation for a given utterance.

3.2.2 Reasoner Development

Having thus identified archetypal ISA Schemas, we next developed a computational

model of the logical reasoning required for their interpretation. The model is de-

scribed in detail in Section 3.3, and was developed through the iterative development

of logic programs, ensuring that the resulting programs achieved a complete cover-

age of the 20 extracted ISA Schemas. An important finding was the extent to which

the knowledge, representations and reasoning requirements were domain-general and

not tied to the particular corpora themselves. Thus, the reasoner we built, encod-

58



ing these domain-general aspects, serves as a necessary starting point for others

extending this work to cover other corpora or other languages.

We encoded the representations in Answer Set Prolog, a declarative logic

programming paradigm that has been used for representing knowledge and reasoning

non-monotonically [GL90a]. Answer Set Prolog or Answer Set Programming (ASP)

programs bear a superficial resemblance to Prolog or to production rule programs,

but are different in how they work. In the ASP paradigm, logic programs are written

to represent knowledge about the world. Variables in the program rules are then

logically grounded in the constants representing a particular situation of interest. A

solver is then used to compute answer sets in which the world definitions are logically

satisfied [GK14]. We used Clingo, an ASP solver [GKK+11], for implementing the

model described in Section 3.3.

ASP has several characteristics that make it useful for representing knowledge

in problems where context is important [Bar03b], such as with the ISA interpreta-

tion problems we are addressing. First, ASP allows non-monotonic reasoning, or

adding knowledge that changes currently-existing beliefs. Second, ASP represents

two types of negation: classical negation is used to indicate propositions that are

false, and negation-as-failure is used to indicate propositions that are considered false

because they are not currently known to be true. Third, ASP allows for choice rules

and cardinality constraints, which allow for the explicit encoding of world-related

constraints to solutions.

One of the purposes of developing this model is to formalize the requirements

and products of the reasoning involved. As described in Section 3.3, the model

requires contextual evidence as input, and produces a set of candidate intents. The

specifics of how this would be integrated into an embodied and situated intelligent

system are beyond the scope of this chapter, but while building the model we ensured

that these tasks could in principle be achievable in agents built with contemporary

cognitive architectures, e.g. [RTO19, SWK+19, Lai12].
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3.2.3 Related Work

Current state-of-the-art data-driven approaches to dialogue act classification employ

general ML techniques like SVMs, Bayes Nets and CRFs. More recently, deep learn-

ing approaches [LHTL17, LLC+19] have shown promising results on popular datasets

like the Switchboard Corpus. These approaches model dependencies between neigh-

boring linguistic expressions using topic informtion as additional context. An ad-

vantage of these approaches is their generality across a wide range of discourses.

However, a limitation in these approaches is that because their datasets possess a

limited conception of context (i.e., linguistic, or at best, the topics of conversation),

they do not learn how situation-specific aspects can switch the interpretation of an

utterance. These systems essentially learn conventionalized ISAs (i.e., those whose

indirect interpretation is always dominant regardless of context). We anticipate that

these approaches can be combined with our approach to help improve the perfor-

mance for conventionalized ISA, when extensive reasoning may not be needed.

Rule-based approaches use context-sensitive rules to logically derive indirect

meanings from surface forms [BWS17, WBOS15b]. These approaches address some

of the limitations of the purely data-driven techniques by explicitly accounting for

context. However, they generally do not reason over multiple aspects of context.

Moreover, a single chunked rule (suggested by these approaches) is not domain-

general and does not provide much in way of explanation for the intent recognition

process. Asher and Lascarides [AL01] provided a formal account of ISAs but were

primarily focused on the semantics of conventionalized ISAs. Our approach addresses

these limitations and is significantly more elaboration-tolerant in allowing for small

factual variations to switch the interpretation.

Plan-based approaches [PA80, HA89, GC99] reason about ISAs using a set of

plan recognition techniques to infer the goals of a speaker. None of these plan-based

approaches systematically enumerate the different types of context, as our approach

does. These approaches do not incorporate the influence of the speaker beliefs about

plausibility, preference and normativity, which we have argued to be important and
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reflective of assumptions about the listener’s capability and preferences. That said,

these approaches could be integrated with our approach as one way to infer speaker

intent.

The closest line of work is that of Wilske and Kruijff [WK06], who proposed

an ISA interpretation architecture for human-robot task-based interactions. They

discuss the notions of “feasibility,” “mode of operation,” and the use of interactional

history, which appear to parallel our notions of capability, contextual role, and dia-

logue history, respectively. However, like the other existing approaches, they do not

consider how a listener models the speaker’s beliefs. For example, in their work, if a

listener considers an action to be feasible, it will take it as a request and immediately

perform the action, independent of whether or not the speaker believed the listener

to be capable.

3.3 Reasoning for ISA Interpretation

Brown [Bro80] provided an early descriptive account of ISAs, in which she elaborated

on their form, what is required to choose one form over another, and what is needed

for these surface forms to carry indirect meaning. We propose that these notions

are useful not just descriptively to study ISAs as inherently interesting phenomena,

but also computationally as a rubric to aid in understanding and interpreting them.

We computationalize the intent preconditions, and incorporate Brown’s descriptive

analysis of the surface form of ISAs into the architecture by allowing the surface form

to dictate the necessary burden of proof required by the reasoners. Our approach,

however, extends Brown’s work significantly, by proposing bridge rules, reasoner-

specific rules, and underlying definitions for the reasoners and their functions. Here,

we systematically operationalize the principles outlined by Brown, first by formaliz-

ing the preconditions as rules in the reasoners, and then by using the surface form

to influence which rules are selected for a particular utterance.

Figure 3.1, which shows an example of the reasoning required for interpreta-

tion, serves as an overview of our approach. The Preconditions of an interpretation

61



Figure 3.1: Types of Reasoning required to interpret the utterance “Can you do
(action) A?” made from a Speaker S to a Listener L. To select the indirect meaning
of a REQUEST for physical action (instead of the direct meaning of an ASK for
information), L must satisfy four Preconditions. However, L does not have direct
access to S’s intentions and beliefs, and must perform Domain-General Reason-
ing (using rules about actions, mutual knowledge, social norms and obligations, and
speaker preferences) based on Contextual Evidence (involving task, role, interac-
tional history, and copresence). Reasoning and Evidence for Preconditions 3 and 4
follow the same pattern as for Precondition 2.

are described in Section 3.3.1, the Domain General Reasoning is described in Sec-

tion 3.3.2, and the Contextual Evidence required for that reasoning is described in

Section 3.3.3.

3.3.1 Preconditions for Interpretation

As shown in Figure 3.1, each underlying communicative intent has a set of precondi-

tions that must be met in order for a speaker to produce a surface form that conveys

this intent. The theoretical justification for this comes from Brown’s descriptive

analysis of ISAs, which extends work by Gordon and Lakoff [GL75]

As shown in Figure 3.1, a Request for a physical action (e.g., “Can you do

action A?”) intent must satisfy the following preconditions: (1) that the speaker S

intends that the listener L do the action A, (2) that S believes that L plausibly

has the capability to do A, (3) that S believes that L is willing to do A, (4)

that S believes that L is normatively obligated to do A. More generally, these four
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preconditions also apply to other intended meanings such as Ask for information,

where A is a speech act rather than a physical action.

Brown also suggested that the specific surface form of the ISA is influenced

by the better-knowledge principle, which states that the direction of information flow

is guided by who, S or L, has better knowledge about a particular proposition in

the ISA.2 So S may select a “can you do A?” question when S needs more evidence

for satisfying precondition 2, and a “will you do A?” question when S needs more

evidence for satisfying precondition 3.

3.3.2 Domain-General Reasoning

As shown in Figure 3.1, several sets of axioms and commonsense rules are used to

test whether preconditions hold in a particular interaction between a speaker and a

listener.

First we consider a set of Domain-General Axioms that allow an agent,

regardless of situation, to reason about action and change, mutual knowledge, and

linguistic alignment.

One subset of axioms involves Reasoning about Actions and Change. A basic

component of the logical evaluation of ISAs is being able to track and infer things

from the ongoing changing context. The Event Calculus (EC) is especially suited to

reasoning about events and provides some axioms that are domain-independent to

help guide this discussion [KS89].

Formula Meaning

holds(F, T ) Fluent F holds at time T

happens(A, T ) Ontic Action A occurs at time T

initiated(F, T ) Fluent F is initiated at time T

terminated(F, T ) Fluent F is terminated at time T

To maintain fluents once they are initiated and unless they are terminated, we have

the following two rules:

holds(F,T+1) :- initiated(F,T),time(T).

2See also [DR12] for additional discussion on “knowledge gradients”.
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holds(F,T+1) :- holds(F,T), not terminated(F,T), time(T).

Another subset of axioms involves Reasoning about Mutual Knowledge. One

challenge in interpreting ISAs is understanding not only what the speaker knows,

wants and believes, but also what the speaker thinks the agent (listener) knows,

and what the speaker thinks the listener thinks the speaker thinks, and so on, ad

infinitum. Herbert Clark described a heuristic-based mutual knowledge induction

schema to terminate this otherwise infinite line of reasoning [CM81]. Under this

schema if the agent knows that a grounds F1 holds, and that these grounds support

a proposition F2, and that they know that the speaker P believes the grounds F1

to hold, then the agent has mutual knowledge with the speaker P . The agent can

establish that if it knows that the speaker P observed the grounds (any proposition

F ), then they are likely to believe it holds. Moreover, if the grounds support a

proposition, then, at least from the agent’s perspective the supported proposition

F2 holds as well.

Formula Meaning

observed(P, F, T ) P was seen as observing F at time

T

bel(P, F ) P believes fluent F holds

supports(F1, F2) Fluent F1 can provide grounds for

fluent F2 to hold

mutual(P, F2) There is mutual knowledge with P

about fluent F

holds(mutual(P,F2),T) :- holds(supports(F1,F2),T), holds(F1,T),

holds(bel(P,F1),T), time(T).

holds(F2,T) :- holds(F1,T),holds(supports(F1,F2),T), time(T).

holds(bel(P,F),T) :- observed(P,F,T), time(T).

Another subset of axioms involves Reasoning about Linguistic Alignment. Un-

der the theory of alignment, there is a mapping from an utterance’s surface form

(which could be a question, statement, command, etc.) to a direct meaning (ask,
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assert, request, etc.) [AL01]. Conventionally, questions map to Asks, statements

map to Asserts and commands map to Requests. Surface forms can also have indi-

rect meanings and thus we need to be able to distinguish these, which we do via the

following alignment axioms:

alignment(question,ask).

alignment(command,request).

alignment(statement,assert).

meaning(M) :- alignment(_,M).

surfaceForm(S) :- alignment(S,_).

direct(U,M) :- hasSurfaceForm(U,S), alignment(S,M), meaning(M), surfaceForm(S),

utterance(U).

indirect(U,request) :- not direct(U,request), utterance(U).

Finally, a set of axioms we assume but do not explicitly discuss areUniqueness-

of-Names axioms which ensure that predicate relations do not clash.

Next, we consider the Burdens of Proof required for domain-general rea-

soning. As a preliminary, consider the utterance “can you do action A?” There are

two types of action underlying this utterance: ontic action specified as A and refer-

ring to the physical act, and epistemic action, which in this case where the utterance

is a question, is to retrieve and respond with information about A.

Formula Meaning

onticAction(U,A) Utterance U contains an ontic action A

epistemicAction(U,M,A,Q) Utterance U contains an epistemic action A that holds

when U has meaning M , and that pertains to propo-

sition Q

uttered(P,U, T ) Interlocutor P uttered U at time T

goal(P,A) Interlocutor P has the goal to do action A

As another preliminary, consider four different lines of reasoning relevant to

ISA interpretation – speaker intent, plausibility, preference, normativity – each of

which attempts to connect a set of facts to whether or not a particular intent holds.
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Each line of reasoning can be thought of as asking different questions of the facts of a

given situation, as described below. These four lines of reasoning correspond directly

to Brown’s four preconditions for an intent to hold. But since we know from the

theory of alignment that certain defaults hold we can adjust our burden of proof to

make it easier to satisfy the default (or direct) interpretation than it would to satisfy

the indirect interpretation. In other words, for a question “Can you install linux on

your computer?” we can state that the burden to satisfy the interpretation of this

utterance being an Ask for information should be lower than it being a Request for

action because the surface form of it is a question and the direct meaning of questions

is typically that of an Ask for information. One way to specify this default burden is

through the use of both classical negation and negation as failure in nonmonotonic

reasoning. We explain these burdens in more detail below.

First, the Speaker Intent Burden of Proof asks the question: does the speaker

want the listener to have the goal of doing action (ontic or epistemic) A? If there is

no proof that the speaker did not want the listener to do the action A, where A is

an epistemic action, then the speaker intended for the listener to interpret the direct

meaning M . For example, in the case of the utterance “Can you do action A?” if

there is no proof that the speaker did not want the listener to answer the question

about A, then the speaker likely intends for this to be a question and expects an

answer.

holds(intends(P1,U,M),T) :- not -wants(P1,goal(P2,A),T), uttered(P1,U,T),

epistemicAction(U,M,A,_), direct(U,M), holds(speaker(P1),T),

holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T),

indirect(U,M2).

If there is positive evidence that the speaker wanted the listener to do the

ontic action A, the speaker intended for the listener to interpret the indirect meaning

M . For the above example, if there is positive proof that the speaker wanted the

listener to perform the physical action A, then the speaker intends for the action to
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be done.

holds(intends(P1,U,M),T) :- wants(P1,goal(P2,A),T), uttered(P1,U,T),

onticAction(U,A), indirect(U,M), meaning(M), holds(speaker(P1),T),

holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T),

direct(U,M2).

In addition, we also provide some ancillary rules to help establish that once

an action is performed, the intent that provoked this action is terminated. Moreover,

once the intent is formed, the action to execute this intent is performed.

terminated(intends(P,U,M), T) :- happened(A,T),

holds(bel(P,responsive(A,U,M)),T).

happened(A,T+1) :- holds(intends(P1,U,M),T), uttered(P1,U,T), action(U,A).

Second, the Plausibility Burden of Proof asks the question: does the speaker

believe that the listener is capable of doing action A? Burden of proof rules similar

to that of Speaker Intent can be formulated for these other reasoning modes as well.

For example, for Plausibility reasoning, the key question is whether there is mutual

knowledge about the capability of the listener.

holds(intends(P1,U,M),T) :- not -holds(mutual(P1,capable(P2,A)),T),

uttered(P1,U,T), epistemicAction(U,M,A,_), direct(U,M),

holds(speaker(P1),T), holds(listener(P2),T), time(T), not

holds(intends(P1,U,M2),T), indirect(U,M2).

holds(intends(P1,U,M),T) :- holds(mutual(P1,capable(P2,A)),T), uttered(P1,U,T),

onticAction(U,A), indirect(U,M), meaning(M), holds(speaker(P1),T),

holds(listener(P2),T), time(T), not holds(intends(P1,U,M2),T),

direct(U,M2).
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Third, the Preference Burden of Proof asks the question: does the speaker

believe that the listener is willing to do action A? This has rules analogous to the

Plausibility Burden of Proof, with willing(P2, A) replacing capable(P2, A).

Finally, the Normativity Burden of Proof asks the question: does the speaker

believe that the listener is normatively obliged to do action A? This has rules analo-

gous to the Plausibility Burden of Proof, with obligated(P2, A) replacing capable(P2, A).

3.3.3 Contextual Evidence

As shown in Figure 3.1, facts and perceivable situation-specific aspects of a context

connect to the burdens of proof. To represent this, we can specify some optional

ancillary rules as well as commonsense knowledge that is associated with each di-

mension of fact. First, the task-related constraint aspect of context, which relates

to limitations imposed by the nature of the action or of the task, as understood

by the interactants. Second, the interactant roles aspect of context, which relates

to the duties, expectations, and obligations of the interactants derived from their

respective social or occupational status; whether one interactant has authority over

the other, for example. Third, the interactional history aspect of context, which

relates to the utterances and actions that have been performed in recent memory

by the current interactants. Finally, the co-presence aspect of context, which re-

lates to the objects and participants that are present when the utterance is made.

The first three of these are motivated by dialogue context models, as for example

surveyed by Jokinen and McTear [JM09]. The last of these is motivated by Clark’s

copresence heuristics [CM81].

The contextual evidence is used by domain-general reasoning in the following

way. To determine if a speaker wants (or does not want) the listener to do an action

A as analyzed by the speaker intent reasoner, we will need to consider whether

the speaker intends to have the action accomplished in the first place (i.e., it is

the speaker’s goal to get the action done) and whether the speaker would wish to

delegate this action to the listener. We can establish this line of reasoning with the

following three rules. The first rule states what is needed for the speaker to want
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the listener to do an action. The second and third rules state how this “want” can

be negated.

wants(P1,goal(P2,A),T) :- holds(goal(P1,A),T), holds(delegate(P1,P2,A),T),

holds(mutual(P1,isAvailable(P2)),T), action(_,A).

-wants(P1,goal(P2,A),T) :- -holds(goal(P1,A),T),

holds(mutual(P1,isAvailable(P2)),T), action(_,A).

-wants(P1,goal(P2,A),T) :- -holds(delegate(P1,P2,A),T),

holds(mutual(P1,isAvailable(P2)),T), action(_,A).

The following commonsense default rules specify how contextual evidence

contributes to reasoning:

% TASK-RELATED

holds(goal(P,A),T) :- holds(requires(K,A),T), holds(currentTask(K),T),

holds(speaker(P),T), onticAction(_,A).

-holds(goal(P,A),T) :- holds(currentTask(K),T), holds(requires(K,Q),T),

epistemicAction(_,_,A,Q), holds(speaker(P),T).

% ROLE EXPECTATIONS

holds(delegate(P1,P2,A),T) :- holds(role(P1,leader),T),

holds(role(P2,follower),T), onticAction(_,A).

-holds(delegate(P1,P2,A),T) :- holds(role(P1,follower),T),

holds(isPresent(P2),T), onticAction(_,A).

:- holds(role(P,follower),T), holds(role(P,leader),T).

% INTERACTIONAL HISTORY

holds(delegate(P1,P2,A),T) :- happened(A,S), time(S), S<T,

holds(speaker(P1),T), holds(listener(P2),T), onticAction(_,A).

% CO-PRESENCE

observed(P1,capable(P2,A),T) :- observed(P1,responsive(A,_,_),T),

holds(isPresent(P2),T), onticAction(_,A).
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holds(delegate(P1,P2,A),T) :- holds(mutual(P1,capable(P2,A)),T),

onticAction(_,A).

The above discussion specified the evidence and reasoning with respect to

Precondition 1 (speaker intent). The Preconditions 2-4 involve analogous reasoning,

which is omitted for reasons of space.

Finally, the following example shows how speaker observations update the

interactional history evidence over several dialogue turns. Of particular interest is

the utterance at time step 7, which has a literal meaning of an Ask for information

but an intended meaning of a Request for action, making it an ISA.

% Narrative

% t=1. p1 says: "You’re gonna go forward"

holds(intends(p1,u1,request),1).

% t=2. p1 says: "stop"

happened(goForward,2).

observed(p1,responsive(goForward,u1, request),2).

holds(intends(p1,u2,request),2).

% t=3. p1 says: You’re gonna turn right 90 degrees

happened(stop,3).

observed(p1,responsive(stop,u2,request),3).

holds(intends(p1,u3,request),3).

% t=4. p1 says: Can you grab the second box

happened(turn,4).

observed(p1,responsive(turn,u3,request),4).

holds(intends(p1,u4,request),4).

% t=5. p1 says: Can you push forward

happened(grabItem,5).

observed(p1,responsive(grabItem,u4, request),5).

holds(intends(p1,u5,request),5).

% t=6. p1 says: just go forward

happened(pushItem,6).
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observed(p1,responsive(pushItem,u5, request),6).

holds(intends(p1,u6,request),6).

% t=7. p1 says: Can you grab the box?

happened(goForward,7).

observed(p1,responsive(goForward,u6, request),7).

uttered(p1,u7,7).

hasSurfaceForm(u7,question).

onticAction(u7,grabItem).

3.4 Generating ISA Schemas - Building an ISA Corpus

In the previous sections, we have argued that intelligent systems that interact with

people in real-world environments need to be able to use context to determine

whether an utterance should be interpreted literally, or as part of an ISA. An impor-

tant part of developing such a capability is testing it. But doing so requires answering

several difficult questions regarding how to collect and represent such content. In

this section, we focus on the task of corpus building and describe one way in which

useful corpora can be constructed.

Specifically, we describe an approach to testing ISAs that is derived from

relevant work in using collections of test problems to track progress in systems that

perform reasoning tasks. We present a formal representation of ISA Schemas re-

quired for such testing, including a measure of the difficulty of a particular schema3.

We develop an approach to authoring these schemas using a combination of corpus

analysis and crowdsourcing, to maximize realism and minimize the amount of expert

authoring needed. Finally, we describe several characteristics of collected data, and

potential future work.
3The plural of schema is schemas [OED19]; we adapt this term from Winograd Schemas as

described in Section 3.5
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3.5 Some RelatedWork in Corpus Building for Knowledge-

Based Agents

AI researchers have developed a variety of language-processing tests that

require reasoning about knowledge [SGC19]. Examples include COPA [RBG11] and

RTE [RMMG08]. Trichelair et al [TETC19] describe some problems associated with

the datasets used for such tests, including limited size and the predictable structure

of their examples. The terms corpus and corpora are used for these datasets by

e.g. Levesque et al. [LDM12a] and Morgenstern et al. [MDO16], even though this

usage differs somewhat from the traditional usage in linguistics, i.e. referring to a

collection of texts and conversations.

One approach we find particularly inspiring is that of Winograd Schemas

(WS), which are used to test a system’s ability to perform anaphora resolution.

The following is an example, reformatted from Levesque et al. [LDM12a], of a WS

problem:

Statement: The trophy doesn’t fit in the suitcase because it’s too [big /

small].

Question: what is too [big / small]?

Answer: [the trophy / the suitcase].

This example shows how schema are actually made up of two halves, called

options. In Option 1, “big” is selected for the statement and question and the correct

answer is “the trophy;” in Option 2, “small” is selected for the statement and question

and the correct answer is “the suitcase.” When a schema is presented, typically only

one option is shown, and the system or person being tested needs to select the right

answer.

We extract several important lessons from the experience of Winograd Schemas.

First, regarding levels of difficulty: WS researchers distinguish between easy and

hard WS problems. Easy WS problems are those that can be solved by (1) statistical
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correlations e.g. simply observing whether the query words co-occur more frequently

with one of the possible solutions, (2) selectional restrictions in which the answer

can be determined just by using definitions of the options, and (3) other simple syn-

tactic cues [Ben15]. Hard WS problems require reasoning about knowledge. In the

example above, determining what the pronoun “it” refers to requires reasoning that

in general if object A does not fit in object B, then object A is bigger than object

B. The words “big” and “small” are equally applicable to “trophy” and “suitcase,” so

a system that only uses statistical correlations will do no better than chance.

This leads to the second important lesson we extract from the experience

of Winograd Schemas, regarding the importance of alternate options. Having

each schema be made up of two options enables the hard problems that cannot be

solved by statistical correlations, because the statements in each option only vary

slightly. (WS are often authored such that they only vary by a single word, though in

some cases this may be several words.) This also ensures that the corpus of schemas

is testing for those slight variations that create large changes in meaning.

This contributes to the third important lesson we extract from the experience

of Winograd Schemas, regarding the difficulty of developing a corpus of such

schemas.

The ideal solution would be to find several such paired halves in naturally-

occurring data, but to the best of the community’s knowledge there is no such source

of naturally-occurring data. One obvious solution is to have experts construct them,

but this is time-consuming and potentially leads to unrealistic data. These challenges

are spelled out in more detail in Section 3.7 Our general approach to solving these

problems is described in Section 3.8 An example corpus development is given in

Section 3.9 But first, the next section provides our formal definition of ISA Schemas.

3.6 The “ISA Schema”

Imagine a person injures their leg and goes to a doctor. In the doctor’s office, the

doctor says that they will begin by asking about the extent of the injury. The doctor
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says: “Can you run?” In this context, the utterance is clearly a question asking about

the patient’s capability.

After a few more questions, the doctor determines that the patient can in

fact run, and that it is safe to test the extent of the patient’s injury. The patient is

taken to a treadmill in the exercise room, and the doctor says: “Can you run?” In

this context, the utterance is clearly a request that the patient begin running.

So the utterance is identical in both cases; only the context has changed.

This contextual change can be informally represented as follows.

Utterance: Can you run?

Context 1: a doctor talking to a patient,

in a doctor’s office,

to collect information for diagnosis.

Context 2: a doctor talking to a patient,

in the exercise room,

to test physical capability.

There are several cues for interpreting the utterance. First, role of the speaker

and of the hearer. Second, location: in an office it is unusual to suddenly begin

running, whereas on a treadmill it is perfectly natural. Third, task : in Context 1 the

task is to collect information about the injury, whereas in Context 2 the task is to

test physical capability; it is therefore more plausible that the utterance in Context 1

is asking about an ability and in Context 2 is requesting an action. Fourth, copresent

items, such as a treadmill. Finally, interaction history : in Context 2 the patient has

already answered the question and the doctor has already diagnosed that it was safe

for the patient to run. All of this suggests that the utterance in Context 1 is asking

about an ability, and the utterance in Context 2 is requesting an action. The literal

meaning of the utterance is asking about an ability, so in Context 2 the utterance is

an ISA.

This example shows how, for a given utterance, variations in context produce
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variations in interpretation. We therefore define an ISA Schema as

SISA = (u, l, c1...n, i1...n)

where u is an utterance, l is the literal meaning of u, c1...n is a set of contexts

in which u is made (where a context is defined by a set of feature pairs), and i1...n

is the intended meaning of u for contexts 1 to n. So for a given context cx, u is an

ISA iff l 6= ix.

Figure 3.2 shows an example ISA Schema. This schema includes context

features including the task at hand and the feature role, with a different intended

meaning i for each context. The utterance is not an ISA in context 1 (because its

literal meaning is the same as its intended meaning) and the utterance is an ISA in

context 2.



[l]utterance Can you run?
literal-meaning ask-ability

context-1



[l]task collect-information
speaker-role doctor
hearer-role patient
location doctors-office

copresent-item chair
interaction-history none


intended-meaning-1 ask-ability

context-2



[l]task test-capability
speaker-role doctor
hearer-role patient
location exercise-room

copresent-item treadmill
interaction-history has-been-diagnosed


intended-meaning-2 request-action


Figure 3.2: Example ISA Schema, where the intended meaning of an utterance varies
based on context, and an Indirect Speech Act is performed in context 2 when the
intended meaning is not equal to the utterance’s literal meaning.

We are interested the difficult cases in which context affects intended meaning.

So we additionally require that (1) at least one of the contexts must be an ISA (i.e.
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l 6= i for that context) and at least one of the contexts must not be an ISA (i.e.

l = i for that context), (2) a system to interpret ISA should look at each context

of the ISA separately, e.g. first (u, l, c1) and then (u, l, c2). This follows from the

experience of WS Schemas as described in Section 3.5

3.7 Techniques for Developing a Corpus of ISA Schemas

Having defined SISA, we next need to define how these SISA can be obtained.

From the relevant work in developing corpora for reasoning tasks, we can

identify several approaches. This section will show how any technique for developing

a corpus of ISA Schemas will involve actions on a continuum involving trade-offs

between naturalness, accuracy, and scalability. After this section describes each of

these techniques and the trade-offs they involve, the next section describes how we

developed an approach that appropriately balances these trade-offs.

3.7.1 Expert Authoring

First, we ourselves could author SISAs; this is the approach that was initially taken

by WS researchers.

The challenge is that this approach is time-consuming, although regarding

WS, Levesque et al [LDM12a] argue that the amount of effort required to author

problems, while not negligible, is not insurmountable either. Indeed, Levesque et al.

manually authored 273 schemas, although their approach does not scale to create

thousands of schemas. However, once these expert-authored schemas are available,

they have been shown to be translatable into other languages [AS17b].

Another challenge is that this approach produces schemas that are potentially

not representative of material that would be found “in the wild.” However, Levesque

et al [LDM12a] argue that WS problems can be derived from natural data, and

that in practice, WS problems can be combined with more-easily-obtained Pronoun

Disambiguation problems, which are like one half of a WS, thereby being “easy”

problems by definition [LDM12a].
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One of the disadvantages of having experts perform the authoring is that

they may subconsciously tailor the resources authored based on the needs of their

research. One of the advantages is that the resources are more likely to be high-

quality, as the experts will have a strong idea of what the schema represents, and

have spent time considering what they should look like. No matter what type of

authoring approach is used, the corpus benefits from having the experts examine

at least a subset of the corpus to ensure the appropriate level of quality is being

maintained.

3.7.2 Non-Expert Authoring

A second approach we could use is to have non-experts author SISA.

This has been done with WS in several different ways. Rahman and Ng

[RN12] had 30 undergraduate students create WS, resulting in 941 schemas. A more

scalable approach was taken by Sakaguchi et al [SBBC19], who used the Amazon

Mechanical Turk crowdsourcing platform to author a set of over 40,000 schemas.

The advantage of having non-experts author schemas is that it removes the

authoring burden from researchers, thereby providing a more scalable approach that

can generate larger corpora. It also lessens any potential subconscious bias. The

disadvantage is that the non-expert authors are still performing a somewhat abstract

language task, and therefore may produce results that are not necessarily tied closely

to the reality of their daily language use. Another disadvantage is that non-experts

are more likely to produce noisy output.

3.7.3 Non-Expert Validation

Regardless of the approach used to develop a schema, the corpus benefits from

validation by examining the corpus. This can be done by experts as described above,

but using experts does not scale to larger corpora.

In developing their WS, Bender et al [Ben15] conducted a study of how cor-

rectly humans interpreted a corpus of WS, and found that participants received an

average score of 92%. That study also helped to identify ill-formed problems that
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had been human-authored, but which were not evident at the authoring stage be-

cause the author had access to both options of the WS (whereas the validator only

had access to one of the options.)

In the same way, Zellers et al [ZBSC18] used Amazon Mechanical Turk to

have human non-experts validate a multiple-choice corpus of grounded commonsense

inference statements.

The advantage of this approach is that it provides a “reality check” on the

quality of the data. The disadvantage is that the non-expert validators may incor-

rectly process the corpus elements, either allowing substandard schemas or removing

acceptable schemas.

3.7.4 Defining a Task to Collect Data

One intriguing possibility is to have subjects work on a task that “naturally” produces

SISAs. This would require defining a task that, in the course of execution, would

require someone to use a given utterance (1) in a context in which the utterance’s

literal meaning was intended and then (2) in a context in which the utterance’s literal

meaning was not intended.

Collecting SISAs in this manner would have the advantage of being more

natural than corpus-based non-expert collections. However, the disadvantage is that

defining such a task is prohibitively difficult without a well-defined notion of what

SISA are, and how to characterize their quality. We therefore reserve this approach

for future work.

3.7.5 Extracting from Existing Corpora

This approach is a variation of the previous technique: rather than create a task

to collect data, we could extract schemas from an existing corpus. However, as

described in the previous technique, there is no single corpus that naturally contains

the schemas that we need. We therefore looked through sets of corpora to see if

an utterance in one corpus might have an identical or near-identical utterance in

78



another corpus, in different contexts, that we could combine together to make an

SISA.

Indeed, this enabled us to perform expert authoring of several schemas that

were thus tied to existing corpora. However, because this approach used expert

authoring, it did not scale. We considered using automated approaches to extract

the SISAs, but we identified several challenges: (1) automatically identifying when

utterances were “similar enough” (i.e. whether the utterances had to be exactly

similar word-for-word), (2) automatically extracting the context information in a way

that was comparable across corpora, and (3) automatically determining the intended

meaning of the utterances. Indeed, accomplishing (3) was one of the motivations for

developing an ISA corpus to begin with.

Using existing corpora promises to result in highly-realistic schemas. There-

fore, although it is currently infeasible to extract schemas entirely from corpora, the

next section shows how we use data (such as utterances and contexts) from existing

corpora whenever possible.

3.8 A General Approach to Developing a Corpus of ISA

Schemas

As described above, any step in developing a corpus of ISA Schemas will involve

actions on a continuum between explicit authoring and natural occurrence, with

explicit authoring providing scalability problems. This section therefore defines a

general approach which maximizes both scalability and ties to realistic data. The

following section describes an execution of this general approach.

Given: the definition of SISAs presented in Section 3.6

Step 1: we identify prospective utterances for the SISAs. Rather than au-

thor these ourselves, we automatically extract them from a corpus. We review the

utterances only long enough to remove any that, for example, have unusual char-

acters. In other words, to help ensure scalability, we do not individually examine

them.
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Context Feature Suggested Context Values
Location School, Store, Street, Restaurant, Offices, Car on the road, Pool, University,

Hotel, Home, Phone call, Nondescript
Task getting contact information, looking for a hotel, asking about a book, mailing

a letter, talking about a show, general dialogue, planing a meeting, planning
errands, looking for a rest stop, grocery shopping

Speaker Role Volunteer, Administrator, Tourist, Tour Guide, Local, Customer, Employee,
Driver, Assistant, Waiter, Teacher, Student, Interviewer, Interviewee, Transla-
tor, Public Servant

Hearer Role Volunteer, Administrator, Tourist, Tour Guide, Local, Customer, Employee,
Driver, Assistant, Waiter, Teacher, Student, Interviewer, Interviewee, Transla-
tor, Public Servant

Copresent Item car, buildings, hotel, theater, letter, package, phone, computer, toy, stamps,
stone, food, utensil, notepad, pictures, clothes, fabric, money

Interaction History this is the beginning of the interaction, they have talked about a plan to ac-
complish the task, the person is beginning an order, they have already talked
about the copresent item, they have talked about events related to the task,
they have determined that the person wants a specific item, the person has
just arrived at the location, they are having difficulty communicating

Figure 3.3: Suggested Context Features and Values, manually extracted from corpora
by the authors

Figure 3.4: Example of the web-based GUI used for non-expert authoring of ISA
Schemas.
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Step 2: for each context feature, we author several suggested context values

by extracting them from corpora. This involves expert authoring, but in terms of

scalability the number of these suggested context values is constant per corpus (i.e.

a corpus with 100 schemas may have the same number of suggested context values

as a corpus with 10,000 schemas.)

Step 3: we use non-experts to author values for the context features, guided

by the the suggested contexts, enabled by crowdsourcing as described in Section 3.7.2

Step 4: we use non-experts to validate the schemas that have been authored,

enabled by crowdsourcing as described in Section 3.7.3

Step 5: we use a limited amount of expert authoring to produce the best-

validated schemas. To maintain scalability, we minimize the amount of expert au-

thoring, such as only requiring experts to act as “tie-breakers” as described in the

example below.

3.9 Example Development of a Corpus of ISA Schemas

We now describe a corpus development whose goals were the following. We wanted to

ensure that we had defined an approach to collecting a corpus of SISAs in a way that

minimized authoring effort while maximizing realism and maintaining scalability.

For our first effort, we also wanted to produce a corpus that was small enough to

be closely examined, while ensuring that we used scalable approaches. From our

familiarity with several corpora [LSS+17, EM17, SYC+19] we decided to focus on

utterances of the form “Can you...?”

For Step 1, we used a script to extract all utterances from the DailyDialog

corpus [LSS+17] that took the form “Can you...?”, and we organized these utterances

in a hash table with a key of the first three words to nominally cluster like sentences.

We then randomly extracted 250 sentences and manually discarded all sentences that

on a quick reading seemed to have unclear grammar or were not very understandable.

This left a set of 215 utterances.

For Step 2, we authored suggested context features as follows. First, we

81



took a sample of 20 utterances from the 215 utterances identified in Step 1. Next,

we identified 2 possible contexts for each of these 20 utterances, and collected all

unique context features. The suggested context features we identified are shown in

Figure 3.3.

For Step 3, we constructed a web-based GUI, shown in Figure 3.4, that used

the elements of Steps 1 and 2. One of the utterances identified in Step 1 is shown

at the top of the GUI. The context features from Step 2 are provided as suggestions

in a drop-down menu, which when selected, populates the editable text input next

to each context feature name. As shown in Figure 3.4, the authors are encouraged

to modify the editable text or to enter text that was not suggested. They also may

enter “irrelevant” for any given feature, or to enter “irrelevant” for all features if they

cannot imagine an appropriate scenario.

We used this GUI to collect data using the Amazon Mechanical Turk and

psiTurk [MMM+12] crowdsourcing tools, adhering to the oversight of an Institutional

Review Board. Before being shown the GUI in Figure 3.4, the participants were given

the following overview:

On each of the following pages, you will be shown a description of a

human-robot interaction. On the same page you will see several questions

for you to answer related to that description.

We are interested in how context can change interpretation. Imagine a

doctor says to you: “Can you move your arm?” In some circumstances

this might be a request for you to perform an action, such as moving

your arm out of the way. In other circumstances it might be a question

about whether you are able to perform an action, such as after a serious

injury. That is why we are asking questions about circumstances.

We used the word “circumstances” to help make the idea of “context” intuitive

to the participants. We framed the “Can you...” utterance in the context of a robotic

interaction in part because that is the scenario that we are interested in, and in part

to provide a concrete basis for the annotators to consider.
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The GUI shown in Figure 3.4 was used to generate 92 SISAs (80 schemas

authored by 20 participants authoring 4 schemas each, and 12 additional schemas

being authored by participants who did not complete the process of authoring a set

of 4.)

As a first characterization of the collected data, we began by considering the

difficulty of the schemas collected. As described earlier, WS are characterized as

either “easy” or “hard” depending on how amenable they are to statistical analysis,

which is affected by the limited number of words that are changed between the two

options. We therefore define the contextual difficulty of an SISA as the number of

nonzero context features that are non-identical between its two contexts. So if two

contexts, with different intended meanings, are identical except for 1 feature, then

it has a contextual difficulty of 1, which is the maximum difficulty.

Contextual difficulty is defined for a nonzero number of contexts because when

two contexts sets are identical but have different intended meanings, this indicates

that the meaning is ambiguous. For our current purposes, we are taking note of

when such ambiguities occur but we leave a full exploration of ambiguities in SISA

for future work. Additionally, the existence of schemas whose two halves are identical

could also be the result of authors who did not understand the task.

The number of examples of schemas for each contextual difficulty level, for

the first set of collected data, is shown in Table 3.1. In addition, 14 0-level (i.e.

ambiguous) schemas were identified. Note that the measure of contextual difficulty

is affected by the existence of the “irrelevant” keyword which the schema creators

were instructed to use; when measuring contextual difficulty “irrelevant” is considered

a variable which matches any other word.

For Step 4, we developed and used a GUI as shown in Figure 3.5 to perform

non-expert validation through crowdsourcing. The purpose of this was to determine

the extent to which human perception of intended meaning corresponded with the

authored intended meaning.

Each schema authored in the previous step was split into two halves based on

their different context. Then an annotator was presented with the half-schema in the
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Contextual Examples
Difficulty Found

1 14
2 14
3 10
4 13
5 12
6 15

Table 3.1: Difficulty Level of Schemas, based on differences in context features, in a
collection of 78 SISAs, where 1 is most difficult and 6 is least difficult.

Figure 3.5: Example of the web-based GUI used for non-expert validation of ISA
Schemas.

GUI to identify whether: (1) the intended meaning is to perform an action, (2) the

intended meaning is a question about whether the hearer is capable of performing

the action, (3) whether the half-schema is ambiguous or not obvious, or (4) whether

the text is incoherent (which may be due to the nature of the automated extraction

of “Can you...” questions, or due to schema creators who completed the task poorly.)

171 judgments were completed by 12 annotators perfoming 13 judgments

each, plus 15 judgments by annotators who did not complete the process of authoring

a full set of 13. (15 of these judgments were therefore “duplicate” judgments of

schemas that had already been judged.)

The results are shown in Table 3.2. We note that non-expert validators had

84



achieved a score of 92% on WS, as described in Section 3.7.3 That was on expert-

authored WS, and authoring WS is arguably easier than authoring SISAs, so we

expected a fairly low accuracy rate on this, and indeed the result of 37% (63 out of

171) bears this out. We believe this low accuracy was due to both the difficulty of

ISA authoring and the use of non-experts, though further work will need to be done

to determine this.

Validator Req. Ask
Response Total Action Ability

Agreement 63 37 26
Disagreement 76 45 31

Ambiguous 26 13 13
Incoherent 6 1 5

Table 3.2: Results of Non-Expert Validation Study 1. Validator responses (agree-
ment/disagreement with intended meaning, ambiguous, incoherent), total counts,
and breakdowns by intended meaning (requested action and asking about ability.)

We performed a second validation study to confirm the results of the first

one. 155 judgments were completed by 12 annotators performing 13 judgments

each, where 1 judgment was left blank. The judgments for this validation study

were made on the same schema as the first validation study. The results are shown

in Table 3.3; the human accuracy rating of 44% (68 out of 155) is comparable to the

first study.

Another reason to perform a second validation study is to enable inter-rater

reliability: in other words, to determine the extent to which crowdsourcing annota-

tors agree on the intention of the authored utterance.

There were 107 comparisons in which an annotator a1 from the first validation

study and an annotator a2 from the second validation study looked at the same half-

schema and determined that it was neither ambiguous nor incoherent. Of those 107

comparisons, in 30 cases a1 and a2 agreed with the schema author. In 12 of those

cases they agreed that it was an ask-ability, and in 18 cases they agreed that it was a

request-action. However, recall that these annotations are actually on half-schemas.

In fact, of those 30 cases only 1 schema is formed from an appropriate set of half-
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Validator Req. Ask
Response Total Action Ability

Agreements 68 38 30
Disagreements 68 36 32

Ambiguous 13 6 7
Incoherent 6 3 3

Table 3.3: Results of Non-Expert Validation Study 2. Validator responses (agree-
ment/disagreement with intended meaning, ambiguous, incoherent), total counts,
and breakdowns by intended meaning (requested action and asking about ability.)

schemas. This indicates the limits of attempting to rely completely on non-expert

authoring of SISAs: it appears to be possible, but the yield is extremely low.

That is why for Step 5 the expert author serves as tiebreaker for the 107

half-schemas which the validators agreed were coherent and unambiguous (but for

which the validators disagreed about the intended meaning). This resulted in a total

of 36 full SISAs.

One of the goals of this particular corpus development was to determine the

strengths and shortcomings of our approach, so at this point we closely examined

and manually edited the entire corpus (whose size had been limited to enable this.)

In general, this step would be avoided to minimize expert authoring for scalability

purposes. Alternately, a randomly-selected subset of the data could be examined to

get a sense of the quality of data being produced.

Generally, the schemas produced after tiebreaking only required a few edits

(2-3 of the context features per schema) to reach the level of quality that satisfied

an expert author. However, some utterances were more ambiguous and therefore

especially difficult for the participants to develop a schema from. For example “can

you tell me about it” was difficult as most of the time the implied meaning is for

the hearer to both respond about their capability and also to perform the action.

This was found in most of the “can you X me Y ” utterances. This suggests that

utterances of this particular sub-form are best not used for schema development by

non-experts. In total, 6 of the 36 utterances produced by tie-breaking were identified

as ambiguous in this way, resulting in a final total of 30 SISAs, or 60 data points for
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testing an ISA interpretation system.



[l]utterance Can you tell me something about the patent law in our country from
the book you are reading?

literal-meaning ask-ability

context-1


[l]task asking about a book

speaker-role student
hearer-role teacher
location school

copresent-item notepad
interaction-history this is the beginning of the interaction


intended-meaning-1 request-action

context-2


[l]task getting contact information

speaker-role administrator
hearer-role student
location phone call

copresent-item phone
interaction-history they have talked about events related to the task


intended-meaning-2 ask-ability



Figure 3.6: ISA Schema authored from non-expert crowdsourcing.

3.10 Discussion and Future Work

To ensure the quality of the corpora produced, crowdsourcing with non-experts and

the extraction of schema elements from corpora should not be seen as techniques that

replace expert authors altogether, but instead as techniques that greatly reduce the

authoring burden of experts, and also provide a basis for schemas that are grounded

in reality. Consider the schema shown in Figure 3.6, which was produced by non-

expert agreement alone (i.e. the two non-expert validators agreed with the non-

expert author.) Even this schema would benefit from expert authoring modifications:

in context 2, for example, the task could be re-stated as “trying to find the right

person to talk to.”

Future work includes further exploring authoring techniques to improve the

effectiveness of the non-experts. There are at least two types of improvements we

could consider. First, we could explore incremental changes such as refining the GUIs

that the non-experts use. For example, we could revise the suggested context feature

options in the drop-down menus. In Step 3 of our example corpus development, the
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non-expert authors often identified one or more contexts which changed the utter-

ance’s meaning, but the non-expert authors often failed to identify those contexts

which were irrelevant, and often left several “confound” context features such as co-

present objects. Also, the non-expert authors often seemed to be confused about the

difference between tasks and roles. Although they were generally able to identify a

relevant location, the authors often did not take advantage of writing in their own

feature values. Finally, the feature values could be modified. For example, we could

describe roles in terms of the dynamic between people, such as “transactional” for

customer-employee and “leader-follower” for manager-employee.

The second type of change we could make involves breaking up the author-

ing task performed by non-experts. In Step 4 of our example corpus development,

we noted that we achieved a low accuracy rate on non-expert validation, and we

suggested that the difficulty of ISA authoring might be a cause of this. Specifically,

the non-expert authoring of SISAs in Step 3 is a challenging mental task involving

linguistic phenomena that most people have not extensively reflected upon. It might

therefore be better to break up that authoring task into several sub-tasks that people

find more intuitive. For example, Step 3a might involve presenting an utterance and

asking the non-expert author to imagine a context in which that utterance had the

intended meaning “request-action.” If so, they would be prompted to write a brief

paragraph in plain language explaining why the intended meaning followed from the

context, specifically listing the relevant context details. Step 3b of the process would

involve presenting these brief paragraphs to a second set of non-expert authors, and

asking them to author the context feature/value pairs (such as “task: mailing a

letter,”) i.e. the c1...n of the SISAs. The advantages of this approach are: (1) the

cognitive tasks of authoring the scenario and formalizing the context are separated,

allowing non-expert authors to focus on one at a time, (2) Step 3b serves as an initial

validation check, (3) the SISAs could then also include a meta-why-n field explain-

ing in plain language the scenario author’s reasoning for the given interpretation in

context n. The potential disadvantage of this approach is that it may involve more

non-expert authors, although the total amount of time those authors take may be
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lower; this can be investigated and quantified.

To summarize, we have defined an approach that balances multiple techniques

to develop a corpus of SISAs. The utterances in Step 1 are extracted from corpora;

the context features in Step 2 are authored by experts from corpora; the initial

schemas in Step 3 are authored by non-experts using crowdsourcing; the validations

in Step 4 are similarly performed by non-experts using crowdsourcing; in Step 5 an

expert author acts as tie-breaker to produce validated schemas. The example corpus

development shows that non-experts are capable of developing schema halves which

can then be assembled by expert authors.

There is much possible follow-up work involving improving authoring tech-

niques by incremental GUI performance, as well as by splitting up the authoring

tasks. Finally, additional issues for further study will doubtlessly be identified when

the corpus of SISAs is actually used to investigate a system’s Indirect Speech Act

processing.

3.11 Conclusion

In this chapter, we present a novel cognitive scientific model of the reasoning involved

in automatically interpreting Indirect Speech Acts (ISAs), empirically derived from

a corpus analysis. The approach is grounded in existing cognitive science and psy-

cholinguistic theories and provides a domain-general formal axiomatization of the

reasoning needed to uncover the intended meanings of ISAs.

Per the approach, the listener reasons about the speaker’s intentions and be-

liefs, using contextual evidence that both the speaker and listener have access to.

Unlike previous approaches, we incorporate reasoning about a speaker’s beliefs about

the listeners capabilities, socio-normative standards, and speaker preferences. More-

over, extending past approaches, we provide a way to incorporate various aspects

of extra-linguistic context into this reasoning process. Following traditions of build-

ing formal representations from corpora, we ensure that our representational choices

completely cover utterances across several task-oriented dialogue corpora that fea-
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ture ISAs. We focus on those utterances that have similar surface form, but different

meanings due to contextual factors. In future work, we intend exploring how linguis-

tic norms of directness, politeness and brevity, associated with ISAs [LW20, WSW20]

can be incorporated into the reasoning process either within or as an extension to

Brown’s model.

We encode the formalism in a logic-based language for knowledge representa-

tion and reasoning. We use a logical representation for several reasons. First, such a

representation allows for explainable processing; specifically, a system would be able

to justify the “thought-process” behind a given interpretation. Such explainability

allows the human user to detect mistakes in and debug the system, and helps build

trust in the system [Rei19]. Second, such a representation could be used to support

online learning: if a system produced a given interpretation, and it later discov-

ered that the interpretation was incorrect, it would have an explicit representation

that it could use to reason about whether the error was in its contextual evidence,

its domain-general rule application, or its preconditions. Finally, we present this

model as a standalone scientific contribution in its own right, building on the work

of Brown, Clark, and the others cited in Section 3.3; a contribution in the fields of

cognitive science and psycholinguistics.
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Chapter 4

Perceiving Object Affordances

In this chapter, I turn to the role of logical sense-making in recognizing how ob-

jects can be used and manipulated, namely their affordances. Although a different

representational language from the one used in language understanding (Chapters

2 and 3), the basic thesis that logical sense-making is needed for visual perception

and action selection still remains. In addition to knowledge representation, here the

focus is less about reasoning and about the role of uncertainty and how such sense-

making works at an architectural level. I discuss the sorts of cognitive architectural

components (implemented in a robotic system) might be needed in conjunction with

a representational format.

4.1 Introduction

Natural human activities involve using and manipulating objects around us and

continuously reasoning about our environment. Consider the example of cooking

activities in a restaurant kitchen: these activities require cutting vegetables, moni-

toring the stove and keeping tools and utensils clean, all while ensuring orders are

prepared and served in a coordinated and timely manner. Not only are team mem-

bers able to recognize various objects around the kitchen, but they know what to

do with these objects, how to use them appropriately, how to help others use them

(i.e., they can infer and act on complex object affordances). That is, the kitchen
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team is using these affordances to reason about the task at hand. Sometimes these

types of activities involve standard reasoning tasks, like choosing a clean knife for

cutting a tomato. Other times, these activities involve more creative reasoning tasks

like solving puzzles and finding novel uses for objects, like using a dishcloth as an

oven mitt.

Reasoning and using objects in this manner is a highly desirable skill for

robotic agents as well. Helper robots will be critical in many application domains:

helping our elderly and disabled in assisted living facilities, conducting search-and-

rescue missions in unforgiving terrain to save human lives, assisting our astronauts on

the space station, or even monitoring our surroundings to keep us safe from national

security threats. In these critical sectors it is highly beneficial to endow robots with

the ability to find creative ways to use and manipulate objects, especially when there

is minimal and uncertain information. Unfortunately, although today’s robots are

proficient at recognizing object features, they are less skilled at recognizing what can

be done with these objects.

In this work, we present a novel computational framework based on Dempster-

Shafer (DS) theory [Sha76] and “uncertain logic” for inferring object affordances. Our

framework comprises a logic-based representational format and inference mechanism

coupled with a nascent computational architecture, CALyX (Cognitive Affordances

Logically eXpressed), to reason about not only functional and physical features of

objects, but also social, historical, aesthetic and ethical aspects that we naturally

consider when perceiving objects – generally, “cognitive affordances”. For example,

we know that dirty knives are typically not used for cutting vegetables, even though

they can functionally accomplish the task. As such we will demonstrate, with ex-

amples, that with our proposed approach a robot will be able to reason about these

kinds of complicated affordances in a unified, systematic, and effective manner.
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4.2 Cognitive Science Background

4.2.1 The Concept of Affordances

Gibson introduced the notion of “affordance” to account for human visual perception

[Gib79]. He considered affordances as latent properties of the environment that exists

in the presence of animals and humans. His general description captured the deeply

interconnected relationship between an animal and its environment in ecological

terms. Since then, the idea of affordances has been adopted across a variety of

disciplines including psychology, computer science, artificial intelligence, and human-

computer design. However, despite this extensive adoption, the ontological and

representational aspects of affordances have been the subject of vigorous debate.

In general, while researchers agree that affordances are possibilities for ac-

tion, they disagree with respect to what they are, where they are and how they

work. There are numerous different ways that researchers have conceptualized af-

fordances [Ruc20, AS19, BR83, BKR18, Che11, Den17, Gal18, RJ19, Gła15, GW12,

HEHEG19, Kri18, Leu12, MCR+18, NN+04, RK14, Ruc17, Var88, VTR16, WDPAP12].

Two contested questions focused on were what affordances are and where

they are supposed to live? Do they belong to the environment, to the agent, or to

the agent-environment system? Turvey proposed that affordances are dispositional

properties of the environment and actualized by the actions of the agent [Tur92].

Reed proposed a more radical theory stating that affordances, although disposed in

the environment, are a scarce resource and actually play a role in regulating human

adaptive behavior and natural selection [Ree96]. Norman proposed two different

kinds of affordances: a real affordance that is in the environment and a perceived

affordance that is in the agent’s mind [Nor88].

Stoffregen argued that affordances do not belong to either the agent or the

environment, but are instead emergent properties of an agent-environment system

[Sto03]. Several theories also explored explicit representational formats including

describing affordances as relations connecting the abilities of the agent with envi-

ronmental features [Che03], and further connecting the effects of agent behaviors on
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the course of events [SCD+07], or as relations connecting environmental attributes

in overlapping conceptual spaces or regions [MSSZ11, MS12]. Scarantino claimed

that affordances are not only relational, but also conditional [Sca03]. Specifically,

she argued that affordances are conditional upon various triggering conditions and

related to the agent’s set of potential abilities.

A number of these and other theories focused primarily on functional aspects

of affordances [BSC02, BA03]. There has also been some limited work in introduc-

ing social considerations into an affordance framework. Schmidt argued to extend

Scarantino’s theory of conditional and relative nature of affordance to include the

idea of social affordances [Sch07]. Work by Kim in the particular space of cog-

nitive robotics and object handover considered social etiquette and norms as well

[KP04, SLD+13].

Using and manipulating objects involves not only functional and physical

aspects of objects, but other features including social conventions that govern the

object’s use, aesthetic considerations that limit what can and cannot be done with

an object, ethical factors that guide moral action, and historical precedence that

influences the designed purpose and intent for the objects. An affordance inference

framework must allow for a broad definition of affordance, which we refer to as “cog-

nitive affordance”, one that accounts for functional as well as non-functional aspects

and must be adaptable to allow for continuous changes to and evolution of these

aspects over time. Some of the above-mentioned theories and representations are

limited in their ability to reason about affordances more holistically and contextu-

ally.

In the next section, we will describe past approaches to reasoning with affor-

dances as used in cognitive robotics. These approaches adopt some of the more con-

ceptual theories mentioned above, e.g., those by [SCD+07, MS12, KP04, SLD+13]

and implement them in computational and robotic systems. Discussing these ap-

proaches allows us to more specifically place our own contribution in the context of

past work.
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4.2.2 Affordances in Cognitive Robotics

In cognitive robotics, there have primarily been two types of approaches to rep-

resenting, inferring, and reasoning with affordances: (1) approaches based on sta-

tistical and machine learning formalisms, and (2) approaches based on ontological

formalisms. These are very powerful approaches and have shown substantial bene-

fits to robotic cognition. However, as we will discuss, these approaches are limited

both representationally and architecturally. Specifically, they do not demonstrate

flexible representational formats to account for social and other non-functional as-

pects of affordances, they do not allow for contextual reasoning, and they do not

address uncertainty in perception and beliefs. These approaches are also limited

architecturally because they mostly only involve bottom-up processing of sensory

(mostly visual) information and thus do not allow for much top-down processing of

sensory information, which is necessary for a more complete account of affordance

perception.

Steedman used Linear Dynamic Event Calculus to formalize the relationship

between objects and their affordances [Ste02]. More recently, work by Abel and

Tellex focused on using Markov Decision Processes to directly model affordances

as mappings between a set of preconditions and goal states, to action possibili-

ties [ABMMT15]. Mastrogiovanni et al. have developed a framework, using Self-

Organizing Neural Maps, for action selection and functional representation of every-

day objects, places and actions in terms of affordances and capabilities, as regions

in a proper metric space [MSSZ11, MS12].

The strength of these works lies in their joint modeling of affordances with

the problem of planning and action sequencing. It allows for not just reasoning about

actions, but also implementing action sequences that then allow for new affordances

to emerge. However, while affordance perception involves action selection from a

choice of action capabilities, its inference has broader applicability than just for

planning. Affordance inference is important to other cognitive processes involved in

commonsense reasoning, natural language explanations, and general environmental
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sense-making. We believe there is a benefit to representing and reasoning with

affordances in a manner that disentangles it from planning, but still allowing for

leveraging the extensive advances in the planning literature.

Montesano et al. have developed statistically-inspired causal models of affor-

dance using Bayesian networks to formalize the relationship between object features,

actions, and effects [MLBSV07, ML09]. Several others have modeled affordances as a

relationship between action, object, and effect [UCS+11, USO12, UNO13, MMV+12].

A number of computational and robotic systems have also emerged to tackle various

sub-problems relating to robotic affordances such as object grasping and handover

[AMC14, CPCI15, UNO13].

The strength of these works lies in their underlying model of affordances per

Sahin’s approach of relating objects, actions, and the effects [SCD+07], allowing

for a close relationship with planning. But here too, inference of affordances is not

separate from specific planning tasks and, therefore, is not applied more generally.

A few researchers have explored ontology-based approaches to represent func-

tional affordances. For example, Varadarajan et al. have developed a detailed

knowledge-ontology based on conceptual, functional and part properties of objects,

and then used a combination of detection and query matching algorithms to pinpoint

the affordances for objects [VV11, Var15]. While being able to query an affordance

knowledge-base is helpful from a deductive standpoint, this approach is limited in

its flexibility for accounting for contextual shifts, and changing social norms.

Moreover, the focus on much of the affordance work in cognitive robotics is on

functional affordances, and so there is often no distinction provided between a ham-

mer in a person’s toolbox and a decorative hammer on display at the museum, both

of which are functionally equivalent, but engender entirely different non-functional

affordances. The social affordances associated with interacting with a museum ob-

ject are vastly different from the social affordances of interacting with a hammer in

a personal toolbox.

Shu et al. have recently presented a framework for reasoning about social

affordances and provide a system that can act in social scenarios like handshaking,
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helping a person stand up, high-fiving, and handing over objects [SRZ16]. While

Shu is reasoning about affordances in social interactions, the underlying affordance

model is still largely devoid of contextual reasoning, and focused more on physical

geometries of objects in these scenarios (in this case skeletal geometries). However,

such physical aspects do not account for the contextual information that is not

perceptual (e.g., high-fiving a friend versus a refraining from high-fiving an enemy)

and is also subject to change.

Thus more generally, despite these past efforts, affordance representation

faces many challenges that have not been overcome in the previous work. Specifically,

past approaches fail to provide flexibility with which to reason about affordances in

the open world, where they are influenced by changing context, social norms, his-

torical precedence, and uncertainty. For example, none of the current approaches

can systematically infer that coffee mugs afford grasping and drinking, while also

simultaneously affording serving as a paperweight or cupholder, or depending on

the context, as family heirloom not meant to be used at all. We argue that infer-

ences of this sort are different from sole high-level reasoning or planning processes,

for they require a continuous interplay between low-level sensory systems and high-

level cognitive systems and between bottom-up (sensory mechanisms to higher-level

cognition) and top-down processing (higher-level cognition to sensory mechanisms)

of information in these systems. Critically, cognitive affordance representation and

reasoning is a separate cognitive process in its own right and deserves its own archi-

tectural framework and inference machinery (separate from high-level reasoning and

planning or low-level feature detection) that can then later be tied together with

suitable perceptual and planning and reasoning frameworks. This is not to say that

affordances are not influenced by perception, planning, and reasoning – they are

– but affordance-based reasoning is not fully explained by and thus not subsumed

within these processes.

Next, we present an architecture for reasoning about affordances that has

components distinct from perceptual processes (e.g., vision, haptics) and from ac-

tion processes (e.g., planning and natural language interaction). Our framework
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Figure 4.1: Context-Sensitive Cognitive Affordance Model

enables reasoning about higher-level affordances that rely on cognition and contex-

tual reasoning separately from perception and action.

4.3 The Computational Cognitive Affordance Framework

The proposed computational cognitive affordance framework consists of (1) a logic-

based affordance representation and (2) a computational architecture (CALyX) that

is context-sensitive and furthermore allows for top-down constraints on visual per-

ception of the environment. Note that the proposed CALyX architecture is distinct

from a (low-level) vision systems even though affordance reasoning can interface

with it. Rather, the affordance representations used in CALyX are agnostic to the

originating modality of the percepts (e.g., vision, haptics, natural language, etc.),

allowing for reasoning at a higher than sensory-level (the sensory-level is sometimes

referred to as detection in ecological psychology). Different from mere sensory pro-

cessing of affordances, the higher-level representations and reasoning processes take

into account perceptual, task-based, and other context as well as relevant mental

states of the agent such as beliefs, intentions, goals, and desires.

4.3.1 Logic-Based Representation

We propose a novel representational format for cognitive affordances, illustrated in

Fig. 4.1, in which an object’s affordance (A) and its perceived features (F ) depend
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on the context (C) [SS15a]. We use Dempster-Shafer (DS) theory [Sha76] – an un-

certainty processing framework often interpreted as a generalization of the Bayesian

framework – for inferring affordance (A) from object features (F ) in contexts (C).

More specifically, the proposed cognitive affordance model consists of four parts: (1)

a set of perceivable object features (F ), (2) a set of context states (C), (3) a set

of object affordances (A), and (4) a set of “affordance rules” (R) connecting object

features and context states to applicable affordances which take the overall form:

r :≡ f ∧ c =⇒ [α,β]a

with f ∈ F , c ∈ C, a ∈ A, r ∈ R, [α, β] ⊆ [0, 1]. Here, the confidence interval [α, β]

is intended to capture the uncertainty associated with the affordance rule r such

that if α = β = 1 the rule is logically true, while α = 0 and β = 1 assign maximum

uncertainty to the rule. Rules can then be applied for a given feature percept f in

given context c to obtain the implied affordance a under uncertainty about f , c, and

the extent to which they imply the presence of a.

We have previously shown that these types of rules are very versatile and

that we can employ “DS-theoretic modus ponens” to make uncertain deductive and

abductive inferences [WBOS15a]. Most critically, these rules allow us to address

representational challenges with Bayesian models where P (A|F,C) needs to be in-

ferred by way of P (F |A,C), P (A|C), and P (C) when we often have no practical

way of obtaining the necessary probability distributions for all the affordances for

an object. We will next provide an overview of our proposed computational archi-

tecture, which we will then use in combination with the above mathematical model

to reason through two situations, each involving a tight interplay between social and

functional affordances.

4.3.2 Computational Architecture (CALyX) - Overview

4.3.2.1 Introduction

We now present the computational Cognitive Affordances Logically eXpressed (CA-

LyX) architecture (Fig. 4.2) for perceiving and reasoning about cognitive affor-
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dances in a unified manner. CALyX has two main components: (1) an Affordance

Reasoning Component (ARC) for performing logic-based inferences of cognitive af-

fordances, and (2) a Perceptual Semantics and Attention Control Component (PAC)

for directing perception in a top-down manner and semantically analyzing percep-

tual information in a bottom-up manner. In addition, CALyX has two supporting

memories: Long-term Memory (LTM) and Working Memory (WM), for storing and

updating logical affordance rules and related uncertainties. These components work

closely with sensory and perceptual systems (e.g., vision) and other components in

a cognitive architecture to coordinate perceptual and action processing.

We will focus on the main components noted above and briefly touch upon

other cognitive components as and when needed. It is important to note here that

CALyX is only a part of a larger cognitive architecture and as such we do not expect

it to cover other cognitive subsystems (e.g., those for planning or natural language

processing) or provide an account for all manner of cognitive function. Instead,

we focus on affordance perception and inference and note that CALyX serves as a

intermediary subsystem linking lower level perceptual subsystems (e.g., vision, motor

control, haptics) with higher-level belief, planning and goal management systems to

facilitate top-down and bottom-up processing in the larger cognitive architecture

(e.g., the DIARC architecture within which CALyX was developed [SSKA07]).

4.3.2.2 Cognitive Cycle

In each cognitive cycle, ARC selects applicable rules from LTM and populates WM.

Once the rules are in Working Memory, both PAC as well as ARC use these rules

as the basis for perception and inference. More specifically, PAC directs low-level

perceptual systems like vision to perform visual searches in a focused manner only

looking to determine beliefs for the specific perceptual features, F , relevant to the

applicable rules in Working Memory. This is a top-down attentional strategy that

helps the robot focus its senses on relevant parts of the environment given the rules

in the WM while ignoring others. ARC performs DS-theoretic affordance inference

on the rules in WM using beliefs about the relevant perceptual features from PAC
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and beliefs about contexts provided by other parts of the cognitive architecture.

The outcome of the inference process is the generation of truth values of various

affordances specified in WM and their associated uncertainty intervals, which are

then used by the rest of the cognitive architecture for planning, reasoning and sense-

making tasks.

4.3.2.3 Memory Management and Context-Sensitivity

In any given situation the robot might be subject to a set of overlapping contexts.

For example, in a situation in which a robot is a kitchen helper, it might be subject to

a context that refers to its role as a helper-robot. Simultaneously, the robot may also

be in a more specific context that refers to a particular task that it must perform, for

example, the task of handing over a knife to the human chef. This set of contextual

aspects, C, collectively constitutes the agent’s situation. As noted earlier, contexts

may often not be perceivable, containing non-perceivable aspects of the task context

and environment as well as the agent’s own belief system. The fact that the agent

is a kitchen helper, for example, is not necessarily perceivable by simply visually

scanning the environment. Information about the robot’s role, beliefs, desires and

intentions may be provided by other high-level processing components in the robot’s

cognitive architecture. Thus, contextual aspects represent those descriptors of the

situation which can be non-physical and even abstract.

This contextual information is passed into CALyX from other parts of the cog-

nitive architecture and received by a Memory Management subcomponent of ARC.

The Memory Management subcomponent searches through all available affordance

rules of the form specified above in the agent’s LTM and identifies rules that contain

contexts that match those in the current situation. We use a matching threshold ζ to

determine whether the current context “matches” the context presented in the rule.

We can set the mass threshold to a value 0 ≤ ζ ≤ 1 and check if the mass of the cur-

rent context exceeds this ζ threshold. Contextual aspects with masses satisfying the

threshold condition will be considered by the Memory Management subcomponent.

The Memory Management subcomponent aggregates the applicable rules (i.e., rules
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applicable to contexts in the current situation) and populates WM. The WM stores

rules of the form described earlier along with corresponding uncertainty intervals.

The Memory Management subcomponent passes the contextual aspects along

with their mass assignments to the Affordance Inference subcomponent. The Affor-

dance Inference subcomponent also has access to the WM of rules and accompanying

uncertainties. In order to perform inference, the Affordance Inference subcomponent

also needs uncertainty information about the set of perceptual aspects, F , identified

in the applicable rules stored in WM. For this, it will turn to PAC.

4.3.2.4 Attention Control and Perceptual Semantics

PAC accesses the rules in WM and determines what perceptual aspects need to be

evaluated. For example, if PAC needs to compute if there are grasp locations near

the handle of a knife, it can resolve this perceptual relation query:

near(knife,G, holdPart(knife) = handle)?

PAC includes vision algorithms to resolve various sorts of relations including the

spatial relation of near(). PAC directs low-level perception subcomponents (e.g.,

vision) to look for and identify uncertainties associated with relevant perceptual

aspects. PAC returns to ARC the masses associated with perceptual aspects of the

applicable rules.

4.3.2.5 Affordance Inference

The Affordance Inference subcomponent of ARC then performs DS-theoretic infer-

ence on the rules in WM using masses for the contextual aspects obtained from the

Memory Management subcomponent and masses for the perceptual aspects obtained

from PAC. ARC computes the uncertainties associated with affordances prescribed

by the rules. In certain cases, the Memory Management subcomponent will selec-

tively populate WM with rules that not only satisfy context, but also specify relevant

affordance relations. This set of rules would be a subset of the applicable rules for
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the selected context.

Generally, affordance aspects and their associated uncertainty intervals and

confidence measures are passed from ARC to other parts of the cognitive architecture

including those subsystems responsible for planning, reasoning and sense-making.

4.4 Robot Kitchen Helper Experiment: Using and Hand-

ing Over Objects

For the experimental evaluation of the proposed computational cognitive affordance

framework we will consider using and handing over objects in a kitchen as a running

example to discuss the representation format, the uncertainty processing framework,

and the inference algorithm in the implemented CALyX architecture. We will show

how our framework assists the agent in reasoning about and deciding what action

possibilities are available during each phase of the handover process, from grasping

the object, to handing it over.

Note that handing over objects “properly” is an important skill for helper

robotic agents. When performing a handover, the robot will need to reason about po-

tential actions it can perform on objects (affordances), for example, selecting grasps

or manipulating the object in certain ways. Existing approaches have focused on

selecting one or two handover norms (e.g., orienting a handle towards the receiver),

a priori, and then building object recognition and motion planning systems that

are dependent on the preselected norms [AMC14, CPCI15]. These approaches fail

to provide flexibility with which to reason about action choices in an open world,

where norms and rules may change, norms may be added and removed, normative

conflicts may arise, and other contextual factors may influence the propriety of a

handover. In contrast, we intend to infer affordances based on (1) the semantic rep-

resentation of certain visual percepts, (2) the agent’s current context, and (3) the

general domain and commonsense knowledge of the agent.

We will first provide a brief review of Dempster-Shafer theory and then use

our framework to model the domain of cooking and assisting humans in the kitchen.
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Then we will walk through how an agent, staffed as a kitchen helper, reasons through

the process of handing over knives.

4.4.1 Mathematical Preliminaries

4.4.1.1 Dempster-Shafer Theory

A set of elementary events of interest is called Frame of Discernment (FoD). The

FoD is a finite set of mutually exclusive events Θ = θ1, ..., θN . The power set of Θ is

denoted by 2Θ = {A : A ⊆ Θ} [Sha76].

Each set A ⊆ Θ has a certain weight, or mass associated with it. A Basic Be-

lief Assignment (BBA) is a mappingmΘ(·) : 2Θ → [0, 1] such that
∑

A⊆ΘmΘ(A) = 1

and mΘ(∅) = 0. The BBA measures the support assigned to the propositions A ⊆ Θ

only. The subsets of A with non-zero mass are referred to as focal elements and

comprise the set FΘ. The triple E = {Θ,FΘ,mΘ(·)} is called the Body of Evidence

(BoE). For ease of reading, we sometimes omit FΘ when referencing the BoE.

Given a BoE {Θ,FΘ,mΘ(·)}, the belief for a set of hypotheses A is Bel(A) =∑
B⊆AmΘ(B). This belief function captures the total support that can be commit-

ted to A without also committing it to the complement Ac of A. The plausibility

of A is Pl(A) = 1 − Bel(Ac). Thus, Pl(A) corresponds to the total belief that

does not contradict A. The uncertainty interval of A is [Bel(A), P l(A)], which

contains the true probability P (A). In the limit case with no uncertainty, we get

Pl(A) = Bel(A) = P (A).

Dempster-Shafer theory can be considered a generalization of Bayesian the-

ory. For example, a Bayesian would model Schrödinger’s cat as a probability distribu-

tion over {dead, alive}, assigning a probability to each hypothesis. Dempster-Shafer

would assign masses to each of {dead, alive, {dead or alive}}, without beliefs having

to sum up, for example Bel(dead) + Bel(alive) 6= Bel(dead ∨ alive). One notable

advantage of this uncertainty processing framework is that it allows for the alloca-

tion of probability masses to sets of hypotheses, and does not require an assumption

about the probability distribution among members of that set.
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4.4.1.2 Uncertain Logic

Logical inference with uncertainty can be performed using DS-theoretic Logical in-

ference with uncertainty can be performed using DS-theoretic “Modus Ponens” (de-

noted �) as discussed by Tang et al. [THPS12]. We will use Tang’s DS-theoretic

AND (denoted ⊗) to combine BoEs on different FoDs [THPS12]. We choose to use

Tang’s models of Modus Ponens and AND over other proposed models because those

models do not allow uncertainty to be multiplicatively combined.

We will use Yager’s rule of combination (denoted
⋂
) to combine BoEs on the

same FoD [Yag87]. Yager’s rule of combination aggregates evidences or confidence

values from different sources, but within the same frame of discernment. Formally,

when combining evidence from n different sources within the same frame, Θ, the

combined multi-evidence BBA, according to Yager’s rule is defined as follows:

mΘ(∅) = 0

mΘ(A) =
∑
∩Bi=A

n∏
i=1

mΘi(Bi),∀A ⊆ Θ, A 6= Θ, A 6= ∅

mΘ(Θ) =
n∏
i=1

mΘi(Bi) +
∑
∩Bi=∅

n∏
i=1

mΘi(Bi)

Yager’s rule of combination is chosen because it allows uncertainty to be

pooled in the universal set, and due to the counter-intuitive results produced by

Dempster’s rule of combination, as discussed in [Zad79].

For two logical formulae φ1 (with Bel(φ1) = α1 and Pl(φ1) = β1) and φ2

(with Bel(φ2) = α2 and Pl(φ2) = β2, applying logical AND yields φ1 ⊗ φ2 = φ3

with Bel(φ3) = α1 · α2 and Pl(φ3) = β1 · β2.

For logical formulae φ1 (with Bel(φ1) = α1 and Pl(φ1) = β1) and φφ1→φ2

(with Bel(φφ1→φ2) = αR and Pl(φφ1→φ2) = βR, the corresponding model of Modus

Ponens is φ1�φφ1→φ2 = φ2 with Bel(φ2) = α1 ·αR and Pl(φ2) = 1− ((1−Pl(β1)) ·

(1− Pl(βR))).

Moreover, we will use the “confidence measure” λ (defined in [NDS+13]) to
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be able to compare uncertainties associated with formulas φ and their respective

uncertainty intervals [α, β]:

λ(α, β) = 1 +
β

γ
log2

β

γ
+

1− α
γ

log2
1− α
γ

where γ = 1 + β − α.

Here, φ is deemed more ambiguous as λ(α, β)→ 0.

4.4.2 Semantic Representation of Visual Perception, F

The vision pipeline for an artificial agent involves various low-level components that

are coupled together to process color and depth information and generate point

clouds and 3D meshes. As noted earlier, PAC is configured to perform scene rep-

resentation and semantic analysis to generate predicates that capture, qualitatively,

certain aspects of the visual scene.

Let F = {ΘF1 ,ΘF2 , . . . ,ΘFN } be the set of N different perceptual aspects

such as color, shape, texture, relational information, and generally information ob-

tained from the vision pipeline that an agent may interpret. Each aspect ΘFi =

{fi,1, fi,2, . . . , fi,Mi} has a set of Mi mutually-exclusive candidate perceptual values

(percepts), which come from the vision system as a BoE, EFi = {ΘFi ,mΘFi
(·)}. We

will usemfi,j to denote the candidate mass values of the percepts, where i ∈ {1 . . . N}

and j ∈ {1 . . .Mi}.

For the purposes of our example, we will represent the agent’s visual percep-

tion of kitchen objects with nine binary (|Mi| = 2) visual aspects, each aspect with a

percept and its negation. Thus, ΘFi = {fi,j ,¬fi,j}, where i ∈ {1 . . . 9} and j ∈ {1}.

The percepts and masses for each of the nine aspects, which can be obtained from

the low-level vision system, are shown below:

holdPart(O) and funcPart(O) are functions that return the name of the

holding and functional parts of an object O. Thus, funcPart(knife) = blade rep-

resents the knowledge that the blade is the functional part of the knife. Similarly,
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holdPart(knife) = handle represents the knowledge that the handle is the holding

part of the knife.

Aspect (ΘFi) Percept (fi,j) Mass (mfi,j )

ΘF1 holdPart(O) mf1,1

ΘF2 funcPart(O) mf2,1

ΘF3 hasSharpEdge(O) mf3,1

ΘF4 hasPointyT ip(O) mf4,1

ΘF5 hasOpening(O) mf5,1

ΘF6 near(O,G,part) mf6,1

ΘF7 grasped(O,part) mf7,1

ΘF8 dirty(O) mf8,1

ΘF9 inUse(O,H) mf9,1

hasSharpEdge(O), hasPointyT ip(O) and

hasOpening(O) represent the perception of various physical features on object O. In

the case of knife we use algorithms developed by [SSCO08] to extract shape feature

information from the object using object meshes. We then segment the objects

(handle and blade) based on their relative sharpness.

near(O,G,part) represents the location of a set of graspable points G on an

object O in relation to a certain object part (holding or functional part). Thus,

near(knife, G, holdPart(knife) = handle) states that there are grasp points near

the handle. The grasp points may be extracted from visual point clouds using

algorithms developed by [TP14] that identify antipodal grasp information based on

object geometries. We can then group these grasp points based on their location

and proximity to the shape features noted above.

dirty(O) represents a measure for whether a certain object is dirty or contains

food particles. Thus, dirty(knife) describes the knowledge that the knife is dirty.

The value of this predicate is obtained from low-level vision components tasked with

monitoring image characteristics of color and homogeneity.

grasped(O,part) represents the agent’s knowledge that it has grasped a cer-
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tain part of the object. For example, grasped(knife, holdPart(knife) = handle)

represents the knowledge that the agent has grasped the handle.

inUse(O,H) represents the agent’s observation that an object O is currently

in use by a person or agent H.

We selected these particular visual aspects because of their significance to the

rules that we will discuss in more detail in the below sections. There is a potentially

huge number of semantic aspects and relations in the environment and it would

not be possible for the agent to keep track of them all. Our approach simplifies

the task for PAC and the vision system to only look for certain relevant perceptual

features based on the agent’s current context. We envision that our set of perceptual

aspects, F , may change dynamically to include and exclude percepts as contexts and

situations change over time.

4.4.3 Relevant Contextual Items, C

Knowledge of the agent’s current context is provided to CALyX by certain high-level

processing components such as the agent’s belief, planning, and goal management

systems. The context is representative of the agent’s beliefs, goals, desires, and

intentions, along with certain other abstract constructs in the agent’s situation.

Together, these contextual items, processed as predicates, represent qualitatively

the agent’s abstract context, i.e., knowledge not directly perceivable.

Let C = {ΘC1 ,ΘC2 , . . . ,ΘCN } be the set of all contextual aspects an agent

may need to interpret. Each contextual aspect ΘCi = {ci,1, ci,2, . . . , ci,M} has M

mutually-exclusive candidate contextual states, which come from the high-level com-

ponents as a BoE, ECi = {ΘCi ,mΘCi
(·)}. We will use mci,j to denote the candidate

mass values of the contexts, where i ∈ {1 . . . N} and j ∈ {1 . . .M}.

For the purposes of our example, similar to our representation of perceptual

aspects, we will represent the agent’s contextual knowledge with two binary con-

textual aspects. The first contextual aspect represents the agent’s current domain

or setting, L, and it includes a contextual value (context) of being a kitchen helper

and its negation: ΘC1 = {c1,1,¬c1,1}. The second contextual aspect represents the
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agent’s tasks in the kitchen while playing two different social roles: (1) as a primary

actor using objects, and (2) as a supporting assistant giving objects to others. This

aspect includes two contextual values: ΘC2 = {c2,1, c2,2}. The contexts and masses

for each of the two aspects, can be obtained from the agent’s belief and planning

systems:

Aspect (ΘCi) Context(ci,j) Mass (mci,j )

ΘC1 domain(X,L) mc1,1

ΘC2 task(X,use,O) mc2,1

task(X, give,O) mc2,2

domain(X,L) represents the agent’s, X, current domain, L. For example,

domain(self , kitchen) represents the knowledge that the agent is currently in the

domain of working in the kitchen. The reason for the domain context is to help the

agent constrain the set of possible affordances available on the object to the domain

it is currently in. For example, the agent might not need to consider affordances of

a knife as a camping tool or as a self-defense tool, while it is functioning as a kitchen

helper. Thus, by choosing a domain, we can restrict what types of affordances the

agent needs to reason about in its current task. This is not to say that the agent

cannot think creatively or absorb affordance rules from other domains. But, as a

simplification for this example, we choose contextual aspects that can help the agent

effectively manage the computational complexity of affordance inference.

task(X,use,O) represents the agent’s, X, understanding of its current task-

related context as being that of “using” object O. For example, task(self , use, knife)

means that the current task-context is that of the agent using the knife for its

intended purpose of cutting.

task(X, give,O) represents the agent’s, X, understanding of it’s current task-

related context as being that of “giving” or “handing over” object O. For example,

task(self , give, knife) means that the current context is that of the agent handing

over the knife to another.

We will discuss the rules themselves in more detail in the next sections.
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4.4.4 Cognitive Affordances, A

The next part of the representational framework are the cognitive affordances A

computed by CALyX based on applicable rules in WM. We use affordances here to

represent action possibilities available to the agent at any given moment in time.

The affordances are represented semantically with predicates for action possibilities.

Let A = {ΘA1 ,ΘA2 , . . . ,ΘAN } be the set of N different cognitive affor-

dance aspects. Each aspect ΘAi = {ai,1, ai,2, . . . , ai,M} has a set of M mutually-

exclusive candidate affordance values (affordances), which come as a BoE, EAi =

{ΘAi ,mΘAi
(·)}. We will use mai,j to denote the candidate mass values of the con-

texts, where i ∈ {1 . . . N} and j ∈ {1 . . .M}.

For the purposes of our example, we will represent the agent’s affordances

with eight binary affordance aspects, each aspect with an affordance and its negation.

Thus, ΘAi = {ai,j ,¬ai,j}, where i ∈ {1 . . . 8} and j ∈ {1}. The percepts and masses

for each of the eight aspects, can be obtained from our rules:

Aspect (ΘAi) Affordance (ai,j) Mass (mai,j )

ΘA1 cutWith(X,O) ma1,1

ΘA2 pierceWith(X,O) ma2,1

ΘA3 containWith(X,O) ma3,1

ΘA4 graspable(X,O,part) ma4,1

ΘA5 sanitizeable(X,O) ma5,1

ΘA6 useable(X,O) ma6,1

ΘA7 giveable(X,O,H) ma7,1

ΘA8 setOnTable(X,O,U) ma8,1

We will discuss each of these affordance aspects below:

4.4.4.1 Commonsense Physical Affordances

Various objects in the kitchen like knives, forks, spoons pots, pans, and appli-

ances offer the agent with various physical affordances. Here we will consider three

such affordances offered by a number of different objects: (1) cutWith(X,O), (2)
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pierceWith(X,O) and (3) containWith(X,O), each representing an affordance of

an object O available to an agent X in a kitchen scenario. Objects can have none of

these affordances or one or more of them. For example, knife can have the affordance

of cutting as well as piercing, depending on the shape of the knife.

4.4.4.2 Grasp Affordances

Many objects in the kitchen tend to have a use for which they are designed, and ac-

cordingly allow for holding and using the object in a particular way for this intended

purpose. For example, knives are designed for cutting and thus can be grasped by

the handle and used to cut with the blade. We account for grasp affordances with

a graspable(X,O,part) predicate, which represents that the object O is graspable by

agentX at a certain part of the object. Thus, graspable(self , knife, holdPart(knife) =

handle) represents that the knife’s handle has a grasp affordance in the current con-

text.

4.4.4.3 Social Affordances

In the context of a kitchen, there are a number of social norms and rules that apply

to ensure safety, etiquette, cleanliness and a generally friendly atmosphere. These

rules present social affordances, i.e., action possibilities related to social interaction

that can be made available to the agent. Here we consider sanitizeable(X,O),

which represents the possibility of washing and cleaning an object. As we will see

with respect to the rules in the next section, social affordances can be represented

both explicitly, as in sanitizeable(X,O), and implicitly via socially-derived rules for

conduct, e.g., presenting the handle first when giving objects to others.

4.4.4.4 Object Manipulation Affordances

Once the agent has begun interacting with the object, certain new affordances are

made available to the agent: useable(X,O) represents the agent’s X ability to use

object O for its intended purpose; giveable(X,O,H) represents the agent’s X ability
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to give object O to a human or another agent, H; and setOnTable(X,O,U) repre-

sents the agent’s X ability to place object O on surface U . These affordances allow

the agent to consider its action possibilities once it is in the possession of the object.

Now, we recognize that these affordance are always available to the agent:

the agent can cut, grasp, give, wash and place the knife at any time. Our affordance

representation does not deny that latent affordances may exist in objects, but merely

attaches uncertainties to their potential applicability. Certain dormant affordances

will have low uncertainties unless certain contextual situations arise, and our rules

seek to capture this type of reasoning with affordances.

It could also be argued that there are many more affordances for knives, and

that we are limited in considering only a few. We agree with this argument and only

present this exemplary set for demonstration and evaluation purposes. In reality,

there are many more affordances, possibly unlimited, and our cognitive affordance

inference framework can reason about all of them simultaneously. Although we will

not address the issue of whether or not there are infinitely many affordances, we will

contend that it suffices to consider only a finite number of them in any given set of

contexts, applicable at a particular moment in time.

4.4.5 Cognitive Affordance Rules, R

The fourth part of our representational framework is the set of rules, R, that repre-

sent the cognitive affordance aspects, A, of the perceptual aspects, F , in contextual

aspects, C. We will present an exemplary set R of rules for the handover example

below.

Let R = {ΘR1 ,ΘR2 , . . . ,ΘRN } be the set of N different cognitive affordance

rule aspects. Each rule aspect ΘRi = {ri,1, ri,2, . . . , ri,M} has a set of M mutually-

exclusive candidate rule values (rules), which come as a BoE, ERi = {ΘRi ,mΘRi
(·)}.

We will use mri,j to denote the candidate mass values of the contexts, where i ∈

{1 . . . N} and j ∈ {1 . . .M}.

For the purposes of our example, we will represent the agent’s affordances

with 18 rule aspects (representing 18 rules), each aspect with a rule and its negation.
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Thus, ΘRi = {ri,j ,¬ri,j}, where i ∈ {1 . . . 18} and j ∈ {1}. The percepts and masses

for each of the 18 aspects, can be obtained from our rules:

Generally, the rules are of the form:

ri,jmfc→a := f ∧ c =⇒ a

The belief function, Bel(R), captures the total support that can be committed

to a rule, R, without also committing to the negation of the rule. The plausibility of

R is, Pl(R), corresponds to the total belief that does not contradict R. Together, the

belief and plausibility represent the uncertainty interval, [α = Bel(R), β = Pl(R)].

Thus, we write the rules in the form:

ri,j[αi,j ,βi,j ]
:= f ∧ c =⇒ a

Below, we show each of the 18 rules for this example, presenting the uncer-

tainty intervals for each of the rules. We have chosen uncertainty intervals in such

a way that the more specific the rule, the more certainty and higher degree of belief

the agent has about that particular rule. Thus, more specific the rule, narrower the

uncertainty interval and higher the values for α and β. Also, for ease of reading, we

have omitted the index j = 1.

Commonsense Physical Rules:

r1
[0.8,1] := hasSharpEdge(O)∧

domain(X, kitchen) =⇒

cutWith(X,O)

r2
[0.8,1] := hasPointyT ip(O)∧

domain(X, kitchen) =⇒

pierceWith(X,O)

r3
[0.8,1] := hasOpening(O)∧
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domain(X, kitchen) =⇒

containWith(X,O)

General Social Rules:

r4
[0.95,0.95] := dirty(O)∧

domain(X, kitchen) =⇒

sanitizeable(X,O)

r5
[0.95,0.95] := ¬inUse(O,H)∧

domain(X, kitchen) =⇒

graspable(X,O, holdPart(O))

r6
[0.95,0.95] := ¬inUse(O,H)∧

domain(X, kitchen) =⇒

graspable(X,O, funcPart(O))

General Object Grasp Rules:

r7
[0.55,0.95] := near(O,G, holdPart(O))∧

domain(X, kitchen) =⇒

graspable(X,O, holdPart(O))

r8
[0.55,0.95] := ¬near(O,G, holdPart(O))∧

near(O,G, funcPart(O))∧

domain(X, kitchen) =⇒

graspable(X,O, funcPart(O))

Task-based Social Rules:

r9
[0.8,0.9] := near(O,G, holdPart(O))∧

task(X,use,O)∧

domain(X, kitchen) =⇒

graspable(X,O, holdPart(O))
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r10
[0.8,0.9] := near(O,G, funcPart(O))∧

task(X, give,O)∧

domain(X, kitchen) =⇒

graspable(X,O, funcPart(O))

r11
[0.95,0.95] := near(O,G, holdPart(O))∧

¬dirty(O)

task(X,use,O)∧

domain(X, kitchen) =⇒

graspable(X,O, holdPart(O))

r12
[0.95,0.95] := near(O,G, funcPart(O))∧

¬dirty(O)

task(X, give,O)∧

domain(X, kitchen) =⇒

graspable(X,O, funcPart(O))

Object Interaction Rules:

r13
[0.8,0.9] := grasped(O, holdPart(O))∧

task(X,use,O)∧

domain(X, kitchen) =⇒

useable(X,O)

r14
[0.8,0.9] := grasped(O, funcPart(O))∧

task(X, give,O)∧

domain(X, kitchen) =⇒

giveable(X,O,H)

r15
[0.55,0.95] := grasped(O, holdPart(O))∧

domain(X, kitchen) =⇒

setOnTable(X,O, T )

r15
[0.55,0.95] := grasped(O, funcPart(O))∧
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domain(X, kitchen) =⇒

setOnTable(X,O,U)

r17
[0.8,0.9] := grasped(O, holdPart(O))∧

dirty(O)∧

domain(X, kitchen) =⇒

setOnTable(X,O,U)

r18
[0.8,0.9] := grasped(O, funcPart(O))∧

dirty(O)∧

domain(X, kitchen) =⇒

setOnTable(X,O,U)

Rules r1−r3 relate to the agent’s general commonsense understanding of the

physical properties of objects. E.g., sharp edges provide a cutting affordance.

Rules r4 − r6 prescribe several social rules in a kitchen environment. For

example, dirty objects need to be sanitized and only objects not currently used by

someone else are available for grasping. We note that there may make be exceptions

to these rules, for example, grasping the object (like a mixer) at a functional part

may still be infeasible or inappropriate. Moreover, even if the functional part is

graspable, extra care may need to be exercised when doing so.

Rules r7 and r8 provide general rules on grasping objects. For example,

if there are grasp points near the handle of a knife, then the handle has a grasp

affordance, and if there are no grasp points near the handle, but there are some near

the blade, then the blade has a grasp affordance.

Rules r9−r12 relate to social etiquette and convention when using and giving

objects. These rules provide a narrowing context depending on the agent’s current

task of using the object itself or giving the object to another. For example, when

handing over an object, it is “proper” to hold the functional part of the object (e.g.,

knife) and present the handle towards the recipient.

Rules r13 − r18 are kitchen rules that apply when the agent is manipulating

and interacting with the object. For example, if the agent is holding the knife by its
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blade and is tasked with giving it to a human, then it is afforded the possibility of

giving the knife.

4.4.6 Handover Inference – Introduction

We will now turn to how a robot with our computational framework can use these

rules to reason through the process of handing over a knife. Consider a robot helper

receiving instructions from a human, Julia. Suppose Julia says to the robot: “Bring

me something clean I can use to cut this tomato.” The robot will need to parse this

request and infer affordances of objects in its environment in context. Before we can

describe how the robot can perform this inference for the knife-handover example,

we will first describe our inference process and algorithm more generally.

4.4.7 Inferring Affordances with Uncertain Logic

The goal of defining cognitive affordance models is to infer object affordances based

on (1) their perceivable features, (2) the known context, and (3) general domain and

common sense knowledge. We propose to start with the first prototype inference

algorithm shown in Algorithm 6.1 and refine it to tailor it specifically to a cognitive

affordance model. The algorithm takes three parameters: (1) a BoE of candidate

perceptions {ΘF ,mf} is provided by the low-level vision system, (2) a BoE of relevant

contextual items {ΘC ,mc} provided by a knowledge base or some other part of the

integrated system that can provide context information, and (3) a table of cognitive

affordance rules R. Each rule rf∧c→a in R is indexed by a feature perception f and a

set of contextual items c, and dictates the mass assigned to Bel(a) and Pl(a) when

the system believes the degree to which object features f were detected and that

contextual items c are true. Here, a is a complex logical expression representing the

affordance that can be derived from the perceived features f in context c.

The inference algorithm then examines each rule rfc→a ∈ R (line 5), and

mfc is determined by performing mf ⊗mc (line 6), where mf specifies the degree

to which object feature f is believed to be detected, and mc specifies the degree to

which each of the rule’s associated contextual items is believed to be true. Uncertain
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Algorithm 4.1 getAffordance({ΘF ,mf},{ΘC ,mc},R)
1: {ΘF ,mf}: BoE of candidate perceptual features
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: S = S ∪ {(mf ⊗mc)�mr=fc→a}
7: end for
8: G = group(S)
9: ψ = ∅
10: for all group ga ∈ G do

11: ψ = ψ ∪ {
|ga|⋂
j=0

gaj
}

12: end for
13: return ψ

Modus Ponens is then used to obtain ma from mfc→a and mfc (line 6).

Note that since we allow multiple affordance rules to be considered, multiple

affordances may be produced. Multiple rules may produce the same affordances for

various reasons, possibly at different levels of belief or disbelief. However, we seek

to return the set of unique affordances implied by a set of perceptions f .

After considering all applicable affordance rules, we group affordances that

have the same content but different mass assignments (line 8), and use Yager’s rule of

combination (line 11) to fuse each group of identical affordances, adding the resulting

fused affordance to set ψ. This set then represents the set of affordance implied by

the perceived features f .

Finally, we can use the confidence measure λ to determine whether an inferred

affordance should be realized and acted upon. For example, we could check the

confidence of each affordance a ∈ ψ on its uncertainty interval [αi, βi]: if λ(αi, βi) ≤

Λ(c) (where Λ(c) is a confidence threshold, possibly depending on context c), we do

not have enough information to confidently accept the set of inferred affordances and

can thus not confidently use the affordances to guide action. However, even in this

case, it might be possible to pass on the most likely candidates to other cognitive

systems. Conversely, if λ(αi, βi) > Λ(c), then we take the inferred affordance to be

certain enough to use it for further processing.
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4.4.8 DS-Theoretic Handover Inference

Returning to our knife-handover example, the robot, X = self , parses the request

from Julia (i.e., for an object she can use to cut a tomato) and assigns its own task

context and determines the types of affordances it is interested in exploiting in the

kitchen environment. The agent is confident that it is in the kitchen context and

that it is in the context of handing over an object in the kitchen, and assigns context

masses as follows:

domain(self , kitchen): mc1,1 = 1.0

task(self , give,O): mc2,1 = 0.95

task(self , use,O): mc2,1 = 0.05

Specifically, the robot’s cognitive architecture includes a natural language

processing component, which processes Julia’s instruction. The phrase “bring me

something” is taken by the robot to indicate a “give” context as opposed to a “use”

context. This contextual information is obtained outside of CALyX and passed into

it as input. Similarly, the robot’s cognitive architecture includes belief and goal

management components, which process the robot’s current role as a kitchen helper

and compute the likelihood that is in the “kitchen” domain. This, too, is passed as

input to our CALyX system.

CALyX’s Memory Management subcomponent receives this contextual infor-

mation and selects applicable rules (Fig. 4.3, step 1). LTM potentially contains a

large set of rules across various contexts that the robot has acquired over its lifetime.

Given the specific domain and task contexts, the Memory Management subcompo-

nent selects a subset of applicable rules from the LTM (step 2) and populates the

WM with these rules (step 3).

Although the context has been established and the applicable rules have been

identified, at this point the robot is not yet ready to do any affordance inference

because it does not know whether the perceptual aspects specified by the rules are

satisfied. Given the set of applicable rules in WM (Fig. 4.4, step 1), PAC can

guide or direct sensory processing systems (step 2) to determine the uncertainties

119



Figure 4.2: Computational Architecture (CALyX). We depict our contribution in
bold solid lines.

Figure 4.3: Selecting Applicable Rules Based on Context
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associated with each of the perceptual aspects specified in the set of applicable rules

(step 3). For example, based on its set of rules, it knows to look specifically for

certain visual percepts relevant to the rules, such as near(), sharpEdge(), and so

on. Note, at this point, the robot is not aware of a specific object that it needs to

find, but with PAC in combination with the low-level vision system, it can scan its

environment and examine each object more closely to determine which perceptual

aspects specified above are satisfied.

Figure 4.4: Determining Beliefs of Perceptual Aspects

4.4.8.1 Spot the Knife - Directed Perception with PAC

Let us assume that the agent spots a knife on the counter. Upon examining the

physical features of the knife, the agent determines masses for percepts in each of its

perceptual aspects.

For example, upon spotting the knife, PAC assigns the percept hasSharpEdge(knife)

with a mass mf3,1 = 0.95. However, because it is slightly unsure it also assigns the

possibility that the knife either has or does not have a sharp edge, {hasSharpEdge(knife),¬hasSharpEdge(knife)},

with a mass = 0.05. With these two masses, support for the percept hasSharpEdge(knife)
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falls within the interval [α, β] = [0.95, 1]. Similarly, we compute uncertainty intervals

for all the relevant percepts, when the agent sees the knife:

hasSharpEdge(knife) [0.95, 1]

hasPointyT ip(knife) [0.8, 0.9]

hasOpening(knife) [0, 0]

near(knife, G, holdPart(knife) = handle) [0.95, 0.95]

near(knife, G, funcPart(knife) = blade) [0.95, 0.95]

grasped(knife, holdPart(knife) = handle) [0, 0]

grasped(knife, funcPart(knife) = blade) [0, 0]

dirty(knife) [0.31, 0.81]

inUse(knife, H) [0, 0]

To summarize, the agent has detected a knife that has a sharp edge and can

be grasped, but it is not entirely sure if it is clean or dirty. Note, the agent has yet

to pick up and grasp the object, so the grasped() predicates evaluate to [0, 0], which

means logically false with maximum certainty.

4.4.8.2 Affordance Inference with ARC

Figure 4.5: Performing Inference of Cognitive Affordances

ARC examines each rule ri[αi,βi] (line 5 of Algorithm 1) in WM (Fig. 4.5, step
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1), and mfc is determined by performing mf ⊗mc (line 6), where mf specifies the

degree to which the percept f is believed to be observed (Fig. 4.5, step 2), and mc

specifies the degree to which each of the rule’s associated contextual value is believed

to be true (Fig. 4.5, step 3). DS-based modus ponens is then used to obtain ma

from mfc→a and mfc (line 6) (Fig. 4.5, step 4).

For example, consider rule r1:

r1
[0.8,1] := hasSharpEdge(O) ∧ domain(X, kitchen) =⇒

cutWith(X,O)

The agent will apply perceptual and contextual information as follows, to

determine the affordance implied by the rule:

r1
[0.8,1](mr = 0.8) :=

hasSharpEdge(knife)(mf = 0.95)∧

domain(self , kitchen)(mc = 1.0) =⇒

cutWith(self , knife)(ma = (mf ⊗mc)�mr = 0.76)

The uncertainty interval for the rule can then be computed as [0.76, 1].The

agent will subsequently perform this analysis for each of the other rules in the set to

determine uncertainty intervals for the implied affordances.

To be able to generate a set of unique affordances, a, implied by feature, f ,

after considering all applicable affordance rules, we thus group affordances that have

the same semantic content but different mass assignments (line 8) and use Yager’s

rule of combination (line 11) to fuse each group of identical intentions, adding the re-

sulting fused intention to set ψ. Thus, affordances from rules r1, r3, r6 and r17 will be

fused as these rules all apply to the affordance of graspable(self , knife,holdPart(knife) =

handle). The agent will also fuse together rules r2, r4, r7 and r18 as these rules all ap-

ply to the affordance of graspable(self , knife, funcPart(knife) = blade). The agent

will further fuse together rules r13, r14, r15 and r16 as these rules all apply to the

same affordance of setOnTable(self , knife, table).
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Based on the application of each rule to the semantic visual percepts and

contextual items, and fusing rules with similar implied affordances together we can

generate a list of unique affordances available to the agent at the current moment in

time, when it has seen the knife:

Available affordances (Upon seeing the knife), ψ

cutWith(knife)[0.76, 1], λ = 0.29

pierceWith(knife)[0.64, 1], λ = 0.16

containWith(knife)[0, 1], λ = 0

sanitizeable(knife)[0, 0.95], λ = 0.004

graspable(self , knife,

holdPart(knife) = handle)[0.96, 0.99], λ = 0.78

graspable(self , knife,

funcPart(knife) = blade)[0.98, 0.99], λ = 0.88

This information is passed from CALyX to other parts of the cognitive archi-

tecture like the robot’s goal and action management system, which performs different

operations based on these measured uncertainty intervals and associated λ confidence

measures. The agent might decide that because there is a high degree of confidence

that the object under consideration has a cutWith affordance, it will choose to grasp

it and then select to grasp it at the blade, given the context of a handover. Because

it is unclear that the knife is dirty, the agent is less confident that the knife needs

cleaning.

4.4.8.3 Grasp the Knife - Iterated Directed Perception with PAC

Affordance inference in this manner with CALyX is an iterative or cyclical process

and affordances are computed and re-computed continuously to guide the robot’s

next actions. Thus, once the robot has grasped the knife, CALyX is once again

tasked with inferring affordances to determine what the robot can and cannot do

with the knife that it is holding. Here the contexts remain the same, so the rules

in WM are likely unchanged. However, because the world state has changed (i.e.,
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the knife is no longer on the table but in the hands of the robot), the perceptual

aspects specified by the rules potentially have different truth values. PAC is once

again called upon to update the uncertainty intervals associated with the visual

perceptual aspects as follows:

hasSharpEdge(knife) [1, 1]

hasPointyT ip(knife) [0.95, 0.95]

hasOpening(knife) [0, 0]

near(knife, G, holdPart(knife) = handle) [0.95, 0.95]

near(knife, G, funcPart(knife) = blade) [0.05, 0.05]

grasped(knife, holdPart(knife) = handle) [0, 0]

grasped(knife, funcPart(knife) = blade) [1, 1]

dirty(knife) [0.95, 1]

inUse(knife, self ) [1, 1]

It updates the grasped() predicate information because it has now grasped

the knife’s blade. The robot also detects that the knife is dirtier than initially deter-

mined, and there are no longer any grasp points available near the blade, because it

is already holding the blade. It also is more certain that the knife has a sharp edge

and pointed tip. Finally, it also knows that because it is using the knife, the knife is

“inUse”.

4.4.8.4 Iterated Affordance Inference with ARC

Based on this update, ARC will re-calculate the uncertainty intervals and confidence

measures associated with its affordances, as follows:
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Available affordances (after grasping knife), ψ

cutWith(knife)[0.8, 1], λ = 0.34

pierceWith(knife)[0.76, 1], λ = 0.29

containWith(knife)[0, 1], λ = 0

sanitizeable(knife)[0.9, 1], λ = 0.564

graspable(self , knife,

holdPart(knife) = handle)[0.5, 0.9], λ = 0.07

graspable(self , knife,

funcPart(knife) = blade)[0.03, 0.9], λ = 0.0006

setOnTable(self , knife, table)[0.84, 0.99], λ = 0.43

useable(self , knife)[0, 0.95], λ = 0.004

giveable(self , knife, Julia)[0.9, 1], λ = 0.56

Having detected that the knife is dirtier than initially determined, the agent

now has a higher confidence that the knife has a sanitizeable affordance. The agent

also has additional affordances available. It has high confidence that the knife is

giveable to Julia and that the knife can be set on the table. It knows that the knife

is not currently useable to cut things by itself, mainly because it is holding the blade

and the current context is a handover, and not use.

Once again, this information is passed to other parts of the agent’s cognitive

architecture like goal and action management systems, which perform different op-

erations based on these measured uncertainties. The agent might decide to choose

to realize one or more of the above observed affordances.

4.5 Experiment - Multi-Domain, Multi-Scenario Handover

4.5.1 Introduction

In our first example of a kitchen helper handing over a knife, we demonstrated the

capability of our framework to reason about cognitive affordances of handing over

objects. We limited the experiment to one domain (i.e., the kitchen helper) and
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we focused on a simple set of rules that govern social interactions in this domain.

We demonstrated a flexible reasoning process that took into account social context.

In this second experiment, we extended the object handover task and compared in-

teractions across various domains and expanded our notion of object affordances to

“social affordances” offered by humans in the scenario, as well. Object handovers

are often complex interactions that involve more social intelligence than just reason-

ing about physical or social aspects of the objects alone. Often, in human-human

interaction scenarios, the giver must tune into various social cues (e.g., eye-gaze) of-

fered by the receiver indicating whether a handover must be initiated or not. Social

context is highly relevant to object handovers, and we will demonstrate the flexibil-

ity of our framework in reasoning about situations when similar observations of the

environment have very different meanings in different contexts.

For this experiment we built on some of the extensive previous work in deter-

mining parameters of a handover from a physical and temporal sense and in deciding

its timing and trajectories [GHB+10, STS95]. With regards to social cognition dur-

ing handovers, Strabala et al. have extensively studied social cues that are crucial

to coordinating a handover [SLD+13]. They provide four exemplary domains – elder

care-giver, mechanic-helper, fire-brigade volunteer, and flyer-handout giver – that all

feature a handover activity, but under very different contexts. In this experiment,

we implemented an affordance-based handover reasoning mechanism for these four

socially distinct domains. While Strabala et al. focused on discovering a unified

handover structure that might apply in all these four domains, we retained the rich-

ness and distinctions of these four different domains, and instead reasoned about the

affordance of “transferability” of an object prior to the handover. We will begin by

describing the four domains in more detail.

4.5.2 Domains

We will consider four exemplary domains as originally introduced by Strabala et al.,

and expanded by us, as follows:.
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1. Care-giver at an elder care facility: In this domain, a care-giver or assistant

holding a glass of water is tasked with handing it over to the patient. The

care-giver must be sure that the patient is ready to receive the water before

beginning the transfer process. In many cases, it is further desirable that the

patient make eye contact and orient her body towards the care-giver.

Moreover, in this scenario, it is often not appropriate for the care-giver to

handover the water when the patient is not attentive and looking away, even

if the patient is reaching out or verbally requesting the water.

2. Mechanic’s Helper: In this domain, a helper is tasked with handing over a

wrench to a mechanic. The social cues in this domain, while similar in

structure to the cues in the care-giver scenario, are vastly different in how

they influence the interaction. Here, the mechanic may be under a car or

focused on the task at hand, and, therefore, not attentive to the assistant. So

the helper must be more attentive to other signals such as the mechanic

reaching out with an outstretched arm and verbally requesting the wrench.

Eye contact and body orientation may be less important in this scenario.

Indeed, sometimes the mechanic may be facing the helper but not be ready

for the wrench, hence the handover must be confirmed through verbal signals

or by reaching out.

3. Fire-brigade: In this domain, a helper or volunteer, who is one of many

agents (humans and robots) in a line, is tasked with passing buckets of water

from a source to the scene of a fire. This domain is different from the prior

two domains in its ignorance of social context. Generally, there is a known

procedure for swinging buckets and the urgent nature of the situation has

eliminated the role of social etiquette. In this domain, it is often permissible

to begin a handover procedure without many social cues like eye gaze,

reaching, or verbalizing. Bodies are often not facing each other and the only

real condition to begin the transfer is possession of the bucket of water. As

long as the giver is holding a bucket of water, the transfer should begin.
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4. Flyer-handouts: In this domain, a giver is tasked with handing out flyers

on a busy university sidewalk. As Strabala et al. note, the giver has no prior

relationship with the people on the sidewalk, and so established social norms

apply [SLD+13]. In fact, this domain is the complement of the Fire-brigade

domain because many social cues, including eye gaze, body orientation,

reaching out actions and verbal confirmation, all apply. The passerby who is

interested in receiving a flyer is likely to face the giver, make eye contact and

request a handout while reaching out. The giver would be considered rude if

she imposed a flyer on someone who was merely walking towards her or if the

passerby provided verbal cues and hand motions that might appear to be a

reaching action, when in fact they were signaling the opposite.

4.5.3 Representing Social Cues and Domain Rules

To represent these domains, we first selected well-established social cues offered by

the receiver to the giver that are often considered relevant to handovers: eye gaze

or eye contact, verbal confirmation, the action of reaching out and requesting the

object, and body orientation [SLD+13]. We represented these social cues as pred-

icates (with intuitive semantics) eyeGaze(X), verbalSignal(X), reachingOut(X),

and bodyFacing(X), respectively, where X refers to the receiver. In addition to the

social cues, we also represented the information that the robot is holding object O

(i.e., the object to be handed over) with the predicate holding(self , O). We rep-

resented the affordance of transferability with the predicate transferable(O,X) to

mean that object O is transferable to receiver X.

With these social cues, we assigned simple social rules or norms that are

applicable generally (but to varying degrees) across all four domains, as follows:

r1 := eyeGaze(X) ∧ holding(self , O) ∧ goal(handover) =⇒

transferable(O,X)

r2 := verbalSignal(X) ∧ holding(self , O) ∧ goal(handover) =⇒

transferable(O,X)
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r3 := reachingOut(X) ∧ holding(self , O) ∧ goal(handover) =⇒

transferable(O,X)

r4 := bodyFacing(X) ∧ holding(self , O) ∧ goal(handover) =⇒

transferable(O,X)

r5 := holding(self , O) ∧ goal(handover) =⇒ transferable(O ,X )

r6 := eyeGaze(X)∧ bodyFacing(X)∧holding(self , O)∧ goal(handover) =⇒

transferable(O,X)

r7 := verbalSignal(X) ∧ reachingOut(X) ∧ holding(self , O) ∧

goal(handover) =⇒ transferable(O,X)

r8 := eyeGaze(X) ∧ bodyFacing(X) ∧ verbalSignal(X) ∧ reachingOut(X) ∧

holding(self , O) ∧ goal(handover) =⇒ transferable(O ,X )

4.5.4 Representing the Domain Distinctions

We represented the different levels of importance of the rules in the four domains

by assigning them different uncertainties depending on the domain. We selected

uncertainties for the rules from three settings, as follows:

High = [0.95, 1]

Medium = [0.5, 0.6]

Low = [0.31, 0.81]

Here, “High" refers to the setting in which the rule is believed to be true with

a low uncertainty (i.e., high degree of certainty). Similarly, the “Medium" and “Low"

levels each correspond to a setting in which the rules are believed to be true, but

with medium and high uncertainty, respectively.

We assigned an uncertainty level for each of the rules in each of the domains,

as shown in Table 4.1. For example, since all social cues are important for the Flyer-

handout domain, rule 8 featuring all of these cues is the most important one. In
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contrast, in the Fire-brigade domain, the only rule that is the most important is

the commonsensical rule 5, which requires possession of the bucket before transfer,

without any other social overhead. In the Elder care domain it is important that

the patient face the giver and make eye contact, whereas in the mechanic domain,

it is important that the mechanic reach out and ask for a wrench before initiating

handover. Accordingly, rules corresponding to these social cues were given more

importance and higher certainty.

4.5.5 Experimental Scenarios

For our experiment, we considered four scenarios that are possible within any or all

of these domains. These four scenarios represent the truth settings for the set of

perceptual social cues - eye gaze, body orientation, verbal request or reaching out -

in a given situation. For example, a mechanic under a car requesting a wrench may

not make eye contact or orient their body towards the giver, so the perceptual cues

like eye gaze and body orientation would be False in this scenario. But the mechanic

is reaching out his arm and requesting a wrench verbally, so the perceptual cue for

verbal request and reaching out would be True. We acknowledge the fact that with

four social cues, there are 16 possible scenarios. In particular, each scenario would

include a combination of true/false settings for the four perceptual cues: eye gaze,

body orientation, verbal request or reaching out. However, we have limited our

Rule Elder Care Mechanic Fire-Brigade Flyer-Handout
r1 Medium Low Low Low
r2 Low Medium Low Low
r3 Low Medium Low Low
r4 Medium Low Low Low
r5 Low Low High Low
r6 High Low Low Medium
r7 Low High Low Medium
r8 Low Low Low High

Table 4.1: Domain-Specific Rule Uncertainty Assignment
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Scenarios Eye Gaze Verbal Signal Reaching Out Body Facing Holding
S1 T F F T T
S2 F T T F T
S3 T T T T T
S4 F T F F T

S1(uncertain) sT sF sF sT sT
S2(uncertain) sF sT sT sF sT
S3(uncertain) sT sT sT sT sT
S4(uncertain) sF sT sF sF sT

Table 4.2: Perceptual Uncertainty Assignment for 4 Scenarios

presentation in this chapter to the four following exemplary scenarios that were the

most informative, across all our domains:

Scenario 1 (S1): When the receiver is making eye contact and facing the

giver, but not providing any verbal cues or reaching out to the giver (e.g., an

elderly patient signaling that they are ready to receive water).

Scenario 2: (S2): When the receiver is verbally requesting the object from

the giver and is extending her arm in anticipation of receiving the object.

The receiver, however, is busy performing another task and is turned away

and not looking at the giver.

Scenario 3: (S3): Here the receiver is fully engaged in the handover and is

providing all social cues.

Scenario 4: (S4): Here, the receiver is only signaling verbally that he is

ready to receive the object, but his attention maybe elsewhere as he is

looking and turned away from the giver. He is also not extending his arm or

reaching out to the giver.

We also generated four additional scenarios that were variations of the first

four. These additional scenarios only differed from the original four in that we

diminished the truth and false certainties using the “Somewhat True” and “Somewhat

False” uncertainty setting:

True (T) = [0.95, 1]
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False (F) = [0, 0.05]

Somewhat True (sT)= [0.62, 0.96]

Somewhat False (sF) = [0.04 0.38]

Here, the “Somewhat True" is an uncertainty setting for perceptual cues that

are logically true, but with a greater amount of uncertainty than that of the “True"

setting (i.e., wider uncertainty intervals). Similarly, the “Somewhat False" is an

uncertainty setting for perceptual cues that are logically false, but with a greater

amount of uncertainty than that of the “False" setting.

Overall, we represented the truth of the social cues in all scenarios per uncer-

tainty levels noted above and shown in Table 4.2. Note, these scenarios represent a

truth setting for each of the perceptual cues in a situation. The scenarios themselves

are independent of the domain. Thus, for example, in a domain, the giver could

perceive a set of cues whose truth settings could fit any one of the scenarios.

4.5.6 Experimental Results and Discussion

We performed affordance inferences for a total of 32 situations involving our eight

scenarios (four certain and four uncertain) across four domains. The results shown

in Fig. 4.6 depict the confidence measure across the various scenarios. Note, that

higher λ values indicate a tighter uncertainty interval and consequently a more con-

fident or clear outcome. For each scenario, we have depicted blue and yellow plots

corresponding to whether or not the uncertainty setting was True/False or Some-

what True/Somewhat False, respectively. For example, in Scenario 1, the blue plots

correspond to the case when the eyeGaze() and bodyFacing() cues were assigned a

setting of True = [0.95, 1]. In this scenario, the yellow plots correspond to the case

when the eyeGaze() and bodyFacing() cues were assigned an uncertainty setting of

Somewhat True = [0.62, 0.96].

The results show that our computational framework conforms to our intu-

itions about these various scenarios. Specifically, we show some interesting distinc-

tions between various domains. For example, in Scenario 2 (S2), a transferable
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Figure 4.6: Plots showing whether an object being held by the robot-giver has
an affordance of being “transferable” to the receiver. Each plot corresponds to a
particular perceptual scenario (truth values for the existence of various social cues)
across four domains - Elder Care-Giver, Mechanic-Helper, Fire-Brigade Volunteer
and an agent handing out Flyers. The perceptual cues in a scenario have assigned
truth values and an uncertainty interval. The yellow plots correspond to the case
when the cues have a higher level of uncertainty. The experiment was performed
for four different scenarios and the results correspond to expected human-human
interaction behavior in these scenarios and domains.
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affordance is considered to exist when a mechanic extends his arm and requests a

wrench even if he is not looking at or facing the robot. While, that same type of

behavior from a patient in an elder-care facility may not offer the same kind of trans-

ferability affordance. We further note that the transferability affordance is always

present across various scenarios in the Fire-brigade domain, while it is only present

for the Flyer-handout domain when the receiver is fully engaged with the giver. As

noted earlier the Fire-Brigade domain represents a domain without much social con-

text and so it is expected that regardless of the social cues, buckets must be passed

along. On the other hand, the Flyer-Handout domain represents a domain with deep

social context and so it is expected that a transfer should not be initiated unless all

social cues are present.

We also show what happens when there is uncertainty introduced to the

various perceptions (see yellow plots in Fig. 4.6). It may be uncertain as to whether

the receiver is facing the robot or has verbally requested the object. There may also

be uncertainties associated with the amount of eye contact or whether an extended

arm actually means that the receiver is “reaching out”. Interestingly, even with

uncertainty the overall structure of the results remained the same but the confidence

of the conclusions dropped. That is, the robot is less sure of whether an object

has a transferability affordance when it was less certain about whether or not it was

perceiving the social cues correctly. In these situations, we can have the robot clarify

the social cues and hold back and wait to handover the object. Note, however, the

Fire-brigade domain exhibited the least change even in the face of uncertainty. This

is because we emphasized the limited role played by social cues in these emergent

and largely procedural handover domains.

4.6 Discussion

4.6.1 Implications of the Proposed Architecture

The novel CALyX architecture for inferring cognitive affordances has an affordance-

based reasoning component (ARC) and an attention control and perceptual seman-
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tics component (PAC). In much of the past work, affordances have been treated as a

subsystem of vision or planning. CALyX allows affordance processing to be a sepa-

rate component, not subsumed in a vision system or a planning engine. The robot’s

vision system is then just one of several sensory systems that work with affordance

processing. For example, certain perceptual aspects like an object’s weight may need

the robot’s haptic and touch systems to resolve. Thus, an affordance rule involving

weight might not involve the vision system at all, and consequently PAC will need

to direct the robot’s grippers and arms to determine weight information.

In CALyX, affordance rules inform and guide visual attention, that is PAC is

guided by the perceptual aspects present in WM at any given moment in time. There

have been findings in psychology to support this approach and these findings suggest

that affordances influence visual attention by biasing and focusing the visual search

on those objects that afford relevant actions. Particularly, researchers have shown

support for top-down control in attention processing, task-based priming of visual

search [Yar67, NI05, PRZV14], and the influence of affordances on visual attention

[TM14, RH11, GVS14]. Developmentally, this is very advantageous as well because

as the robot develops, our architecture allows the robot to take into consideration

additional perceptual aspects and social cues as it learns them. These social cues will

present themselves in the rules and allows the robot to reason about these cues in

relation to others as we have shown here. Moreover, the framework allows the robot

to revise its rules and beliefs without the need to undergo new rounds of training

and learning, as is typically needed for other statistically-inclined affordance learning

frameworks.

We have also shown ARC and PAC as separate components of CALyX. ARC

and PAC perform different functions, as noted above. However, this separation is

not merely a functional one. Each component is autonomous and does not rely on

the other beyond an input-output relationship. PAC can potentially interface with

not only the vision system but also a haptic system and auditory system to perform

perceptual semantic analysis and attention on these other modalities when the af-

fordance rules demand it. Similarly, ARC interfaces with various other higher-level
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cognitive systems (planning and reasoning) to perform affordance-based reasoning

tasks.

CALyX is a flexible architecture and does not preclude maintaining an episodic

memory of situations that involve acting on certain affordances and observing the

effects. For example, although not described explicitly, CALyX does not exclude the

robot from tracking and maintaining the effects of grasping the knife and handing it

over to the human. We noted earlier, that the truth values of the perceptual aspects

can change from moment to moment and CALyX does not preclude tracking this

information. In fact, observing the effects can influence the uncertainty of some rules

in the current context. In the future, when the robot encounters similar contexts, it

can remember these rules and reason accordingly.

We recognize that because our framework is rule-based, there is a possibility

for rule conflicts. Rule conflicts can arise in many ways. One way is if a feature and its

negation produce the same affordance. If there is a rule (r1 :≡ handle∧context1 =⇒

graspable), then there might be a conflict if there is then another rule that states

that (r2 :≡ ¬handle ∧ context1 =⇒ graspable). Conflicts of the type between

r1 and r2 are currently being resolved in our framework through our Yager fusion

operator (which was designed for handling conflicting evidence of this sort) combining

uncertainty evidence for graspable from each of rules r1 and r2. Another way a

conflict may arise is if the same feature in the same context can produce conflicting

affordances. For example, if in addition to rule r1, there is another rule implying a

negation of an affordance, like (r3 :≡ handle∧context1 =⇒ ¬graspable). Currently,

in the examples we have presented, we have not explicitly reasoned about “negative

affordances” like ¬graspable. However, it is reasonable to expect that both graspable

and ¬graspable could belong to the same frame of discernment, and consequently,

fusing conflicting evidence from rules r1 and r3 can be handled in a similar manner.

Overall, a main advantage of the proposed architecture is that rational choices

can still be made in the face of conflict because of the underlying character of the

uncertain logic based inference algorithm. That is, the algorithm considers the rules

(conflicting or otherwise) together through the fusion operator and collectively deter-
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mines implications. Moreover, the architecture could be coupled with a higher-level

predictive engine to test expectations against observations and adjust rule uncer-

tainties.

Our architecture does not preclude, and in fact encourages the selection of

an optimal choice of affordance, especially when there are many choices available.

This is because at any given moment, the architecture presents a set of affordances

along with uncertainty intervals. It makes no judgment about which one to select,

because that is not the function of the affordance inference process. Selecting an

optimal affordance to act on is the job of other cognitive functions like planning

and goal management. CALyX provides helpful metrics such as the λ confidence

measure, but it does not specify any further requirement in regards to selecting

certain affordances.

One concern is that as the number of rules increase, there is a potential for

higher time and space complexity. The architecture does not explicitly address this

beyond suggesting the use of a limited working memory to track applicable rules and

only perform inference on this reduced rule-set.

CALyX is capable of withstanding changes in the environment and can adjust

for these changes over its cognitive cycles. Short term changes in the environment

can impact the agent’s decision process. The architecture does not preclude adapting

to current demands, even if that means pursuing short term changes temporarily.

This is because, the architecture is more focused on moment-to-moment or cycle-

to-cycle affordance inference and not more general planning and goal management

issues.

Note that the proposed architecture does not preclude the agent from operat-

ing with a certain degree of autonomy. With the inclusion of an uncertainty interval

and the confidence measure, not only does the architecture allow the agent to ask

clarification questions when certain aspects are unclear, but we can also track and

quantify the level of autonomy for the agent based on how frequently it encounters

ambiguity. An agent with one too many uncertain rules or an agent with faulty sen-

sors that result in uncertain percepts is less autonomous. This allows for the agent’s
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general reasoning abilities to be quantifiable.

We should note that we have implemented our algorithm and the CALyX

architecture in connection with a robotic vision system, and we have integrated it

into the larger DIARC architecture [SSKA07], although these additional aspects are

beyond the scope of this chapter.

4.6.2 Learning the Rules

Thus far, we have not discussed, explicitly, the origin of the cognitive affordance

rules and how an agent might generate or learn new rules, because this is not the

focus of this chapter. Our focus in this chapter, instead, was to demonstrate our af-

fordance representation format, inference algorithm, and architecture. Nevertheless,

we expect these rules can be learned in a number of different ways from observation,

demonstration and exploration, and using multiple different modalities including vi-

sion, natural language and haptic information. The agent could learn these types of

rules from explicit natural language teaching and instruction as shown by Cantrell

et al. [CTS+12]. The agent could also learn various rules from observation through

reinforcement learning (RL) methods as shown by Bouralias [BBS15] or through ex-

ploration from methods as shown by Forestier [FP15]. Alternatively, the agent could

also acquire these rules through data mining and various association rule-mining

techniques [WKPW09]. Techniques for learning rules, especially those associated

with social norms, is the subject of Part II of this dissertation.

4.7 Using Inferred Affordances - Future Work

The focus of the proposed architecture is affordance inference (what to do with the

inferred affordances is beyond the scope of this chapter). Generally, the architecture

leaves open the possibility for how the affordance information can be utilized suitably.

As discussed before, these affordance computations are useful in planning problems

and in guiding a robot’s next actions. In fact, the benefits of affordance computations

extend further and as outlined below, affordance-based reasoning may be the basis
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for all manner of creative reasoning and sense-making.

4.7.1 Novel Tool Use

Consider the example of a robotic assistant helping a human with an assembly task

in which the human has asked the robot to tighten a loose screw. We would like for

the robot to understand this task and the tools needed from an intuitive standpoint

such that even in the absence of a screwdriver, it can reason through alternatives

and find another substitute.

The robot may know of a number of rules related to its role as a helper. One

rule may be: that if agent X is given a task to tighten a flat head screw S, and X

sees an object O that has a flat-head edge, then the object O has a tightenWith

affordance. This rule can then be represented in DS-theoretic uncertain logic a

follows:

r0
[αR0

,βR0
] :≡

hasF latEdge(O) ∧ task(X, tighten(S,flat)) =⇒

tightenWith(S,O)

The robot (through attention control and perceptual semantics analysis in

CALyX) can look around the room and determine (within a certain uncertainty

interval) whether or not each of the various objects that it sees has a flat edge.

hasF latEdge(Screwdriver)[0.95, 0.95]

hasF latEdge(Knife)[0.9, 0.9]

hasF latEdge(Coin)[0.75, 0.95]

hasF latEdge(Pencil)[0, 0.95]

The robot can then apply DS-theoretic logical inference on rules, such as the

one above, and infer uncertainties for the tightenWith(S,O) affordance for each of

the five objects. Based on this inference, the robot can deduce that knives and coins

can be used to tighten screws in the absence of screwdrivers, but pencils cannot.
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4.7.2 Creative Problem Solving

An affordance-based approach might shed light on insight and creative problem solv-

ing scenarios that require an ability to think about a problem from a different angle,

[MB14], or in our case, a different context. Affordance-based creative reasoning ap-

proaches are not new and have been attempted by Olteteanu [OF14]. However, these

approaches are limited for the same reasons as others in the affordance literature,

in that they cannot account for complex affordances in different contextual circum-

stances. We believe that an affordance representation of the form presented in this

work may assist in modeling both creative and commonsense reasoning processes

more effectively. Moreover, when coupled with mental simulation engines, the agent

need not physically actualize the affordances in order to see their effects, choosing

instead to simulate mentally in a suitable physics engine.

4.7.3 Role of Affordances in Sense-making

Our perception of affordances in our environment enable us to not only know what

we can do with objects around us, but they also serve to tell a story about our

current situation. For example, chairs and tables in a restaurant allow people to

sit and eat their food. However, a collection of chairs without any tables in the

middle of the restaurant would strike us as a bit unusual. Our need to make sense

of the situation drives us to dig deeper and learn more about the reasons why there

are no tables. This same need is what allows us to discover problems when there

is a mismatch between what we see and what we expect to see. Reasoning about

cognitive affordances in a more general way, as outlined in this chapter, has the

potential to assist in such sense-making, which can be useful for artificial agents

navigating in the open world.

4.8 Conclusion

As part of their interview process, many modern technology companies show prospec-

tive candidates an object they have never seen before and ask them to describe what
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they think is the object’s function. The purpose of the question is to test the

candidate and probe their intellect to identify candidates with strong mental repre-

sentations of affordance. Clever answers are often rewarded and stand as an example

of human creativity. The ultimate goal of our research is to endow robots with the

ability to find creative ways to use and manipulate objects and their environment.

In this work, we took the first steps towards our goal and proposed a novel

computational framework based on Dempster-Shafer (DS) theory for inferring cogni-

tive affordances. We demonstrated how our framework can handle uncertainties and

be extended to include the continuous and dynamic nature of real-world situations.

We believe that this, much richer level of affordance representation is needed to allow

artificial agents to be adaptable to novel open-world scenarios.
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Part II

Learning Knowledge – Case of

Norms
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Chapter 5

Learning Social Norms from

Natural Language

In Part II of this dissertation, we turn our attention to one specific type of knowledge

needed for sense-making – normative – that we saw (in Part I) was crucial to language

understanding and affordance perception. In this part, we will explore how norms

can be learned from natural language, how they are represented and how they can be

inferred from behavioral observations. We will also explore how legal theory around

the notion of “consent,” which is a particular class of social norms, can inform research

in human-AI interaction.

First, in this chapter, we pick up where we left of in Chapter ?? and consider

how social norms associated with object affordances can be learned from natural

language instruction.

5.1 Introduction

Using and manipulating objects in the environment requires a cognitive ability to

perceive and evaluate their meaning, applicability and usefulness in relation to our

own abilities to take action. Such a relational notion, known as an affordance, links

action and behavior possibilities with objects and features present in the environ-

ment, enabling the ability to guide our behavior [Gib79, ZHL+17]. In robotics and
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AI, affordances have served as the underlying theory for action perception and have

been modeled using relational and machine learning techniques such as Bayesian

Networks, Markov-Logic Networks, Conditional Random Fields, and Reinforcement

Learning [Ste02, MLBSV07, UNSO15, KS16b, SM17]. While much of the affordance

literature in robotics has focused on object or environmental affordances, some have

considered “social affordances” and offered an approach to perceiving visual cues

offered by social scenarios involving other agents (e.g., raised arm signaling a high-

fiving affordance) [SRZ16]. However, these methods do not allow for socio-contextual

dependency on object affordances.

[SS16b, SS18a] proposed the theory of cognitive affordances to address this

problem. The theory of cognitive affordances uses a probabilistic-logic based ap-

proach capable of inferring affordances in the face of changing contexts, social norms,

and epistemic uncertainty , i.e., it accounts for those object affordances influenced by

factors beyond perceptual cues on the objects themselves (“cognitive affordances”).

However, the question of how exactly to learn these cognitive affordances and utilize

them on a robot is still open. The problem is especially difficult because these sorts

of socio-contextual dependencies are, for humans, learned through a few exposures

or instructions, and not through numerous trials and errors.

In this chapter, we address these open questions directly and propose two

novel contributions: (1) a grounding and integration of cognitive affordance represen-

tation within a cognitive robotic architecture, and (2) an approach to learning these

cognitive affordances from natural language instruction in the presence of epistemic

uncertainty. The proposed approach allows for encoding, learning and immediately

actualizing of a broad class of normatively-charged cognitive affordances, accounting

for aspects of objects that the agent can directly perceive (e.g., object features) and

aspects that are not self-evident or directly perceivable from the object itself (e.g.,

context and social convention associated with the object, goals of the agent).

We will use a kitchen-helper robot from [SS18a] as our running example, with

the robot learning, from instruction, how to properly grasp a knife when using it and

when handing it over to someone (at the blade). Although the proposed approach
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is not limited to this particular example, or even embodied robotic systems for that

matter, a concrete example of this sort will help tie it to past work and explain

various aspects of the representation, inference algorithm, learning approaches and

integration with a cognitive robotic architecture, to allow for normative behavior

capabilities.

5.2 Theory of Cognitive Affordances

We are interested in the class of affordances that possess additional properties and di-

mensions beyond the simple Gibsonian notions (e.g., “sitability of a chair”). As noted

earlier, this class of cognitive affordances is deeply influenced by contextual and nor-

mative factors including goals and intentions, prior knowledge and interpretations,

ensemble scene information, mental state, experience and developmental state, social

and moral conventions, and aesthetic considerations among others. We will build

on a recent theoretical model of cognitive affordances proposed by [SS16b, SS18a]

that represents affordances as condition-action rules (R) where the left-hand sides

represent perceptual invariants (F ) in the environment together with contextual in-

formation (C), and the right-hand sides represent affordances (A) actualizable by

the agent in the situation (e.g., the rule that one should grab a knife by the handle

when using it would be translated by specifying the grasping parameters as F , the

task context of “using a knife” as C and the constrained grasping location together

with other action parameters as A). Affordance rules (R) take the overall form

r
def
= f ∧ c =⇒

[α,β]
a, with f ∈ F , c ∈ C, a ∈ A, r ∈ R, and [α, β] ⊆ [0, 1]. [α, β] is a

confidence interval intended to capture the uncertainty associated with the truth of

the affordance rule r such that if α = β = 1 the rule is logically true, while α = 0

and β = 1 assign maximum uncertainty to the rule. Similarly, each of the variables f

and c also have confidence intervals associated with them, and are used for inferring

affordances as described in more detail below. Thus, rules can then be applied for a

given feature percept f in given context c to obtain the implied affordance a under

uncertainty about f , c, and the extent to which they imply the presence of a.
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Given a set of affordance rules, we can determine the subset of applicable rules

by matching their left-hand sides given the current context and perceivable objects

in the environment together with their confidence intervals, and then determine the

confidences on the fused right-hand sides (in case there are multiple rules with the

same right-hand side) based on the inference and fusion algorithm in [SS18a]. We will

use the “confidence measure” λ defined by [NDS+13] to determine whether an inferred

affordance should be realized and acted upon. For example, we could check the

confidence of each affordance on its uncertainty interval [αi, βi]: if λ(αi, βi) ≤ Λ(c)

(where Λ(c) is an confidence threshold, possibly depending on context c), we do not

have enough information to confidently accept the set of inferred affordances and

can thus not confidently use the affordances to guide action. However, even in this

case, it might be possible to pass on the most likely candidates to other parts of

the integrated system. Conversely, if λ(αi, βi) > Λ(c), then we take the inferred

affordance to be certain enough to use it for further processing.

From a systems standpoint, in order to process cognitive affordances, several

functional units were proposed by [SS18a]. During inference, the functional units

are meant to search through all available affordance rules of the form specified above

in the agent’s long term memory and populate a working memory with the relevant

rules. Once the rules are in the working memory, the system can use these rules

as the basis for perception and inference. An example cognitive affordance rule

instantiation in this past work had the form,

r
def
= hasSharpEdge(O) ∧ domain(X, kitchen) =⇒

[0.8,1]
cutWith(X,O).

While this past work presented some crucial early theoretical foundations

for using and performing inference with cognitive affordances, it was missing two

key components. First, the past work did not suggest how these rules could could

be grounded in a robotic system. For example, [SS18a] state that the results from

affordance inference are “passed to the robot’s action management system,” but
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they do not discuss how exactly this interaction might work and how an action

management system might be able to use this information in connection with its own

action repetoire and action knowledge. Thus, an open question is how can an agent

use cutWith(X,O), and what exactly do the predicates and variables in the logical

representation mean in a robotic architecture. In this chapter, we describe such a

grounding for an exemplary architecture and provide a grounded rule representation

consistent with the cognitive affordance theory, but also tightly integrated with the

robot’s actuation and perceptual systems. In doing so, we will also need to revisit and

modify the above-mentioned cognitive affordance rule example to tie the predicates

in the rule representation to perceptual and action knowledge actually available in

the system as well as contextual knowledge associated with the task the agent is

performing.

Moreover, while [SS18a] have outlined an approach for performing inference

with cognitive affordance rules, it is still an open problem as to how these rules

might be learned. Here, we propose a solution based on learning from instruction,

which at times, might be the only option available to an agent, for example, in

situations where the agent does not have enough time to observe or if the agent is

not able to collect enough observational data. Recent work by [SKO+17] discusses

an approach for learning percepts and actions from instruction. Here, we propose

extending this approach for learning not only perceptual and action predicates, but

the rules themselves. By combining these ideas from past work, we provide a novel

approach for learning normatively-guided affordances from natural language.

5.3 Grounding and Learning

To choose and manipulate everyday objects in socially-appropriate and context-

dependent ways, we claim that any cognitive system will require mechanisms for

learning, representing and immediately applying arbitrary socio-contextual rules as-

sociated with these objects. While the cognitive affordance theory provides a suitable

rule representation, the rules must be grounded within the cognitive system (Section
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5.3.1). Action management components must be able to guide perceptual and action

components to check if a rule applies, and then apply the rule by constraining action

choices and parameters, all under conditions of epistemic uncertainty (Section 5.3.3).

Moreover, much of these social norms are conveyed via natural language. So the nat-

ural language components must be equipped to parse speech into the grounded rule

representations (Section 5.3.2).

5.3.1 Enabling Affordance Processing in a Cognitive Robotic Ar-

chitecture

To integrate affordance processing into a cognitive robotic architecture, we devel-

oped a separate component for maintaining the affordance rules and the inference

algorithm for diarc, an example architecture [SSKA07]. In addition we updated

several components of the architecture to be able to handle the new types of in-

formation enabled by the new affordance component. This grounding within the

architecture gives the affordance reasoning mechanisms described in Section 5.2 a

concrete medium through which new rules can be added dynamically based on an

agent’s interactions with its environment. This extends the functionality and utility

of the theoretical model which previously was limited to a fixed set of abstract rules.

We selected diarc over other cognitive robotic architectures (e.g., soar

[LNR87], act-r [ABB+04]) because of its integration of social behaviors, and specif-

ically its natural language understanding and production capabilities which allow for

more natural human-robot interaction, as well as the ability to learn new concepts

through natural language [SKO+17]. None of the current cognitive robotic architec-

tures (including diarc) are currently able to represent and reason about cognitive

affordances.

So regardless of the choice of architecture, an affordance component of the

type described here could be desirable to enable affordance processing and enhanced

social interaction capabilities. Whichever architecture is chosen, the proposed affor-

dance component will still need to be connected to other high and low level compo-

nents in order to be able to influence perception and action.
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Figure 5.1: Architecture diagram. Affordance Component aff highlighted. Other
relevant components: Speech Recognition asr, Natural Language Understanding
nlu, Dialogue Manager dlg, Natural Language Generation nlg, and Speech Syn-
thesis ss, Belief Model bel, Motion Control motion, Vision vision, and Goal Man-
ager/Action Manager gm/am. During operation, aff receives semantic information,
uses gm/am to direct vision to look for environmental features relevant to social
norms, and then guides motion via gm to perform a socially-appropriate action.

Fig. 5.1 depicts the integration of the affordance component (aff or affor-

dance) in diarc. The subcomponents of affordance work closely with sensory

and perceptual systems (e.g., vision system) and other components in the archi-

tecture to coordinate perceptual and action processing. affordance is connected

to the goal management component (gm/am or goal manager), and during the

execution of actions goal manager sends affordance requests to affordance.

These requests provide information about the current action to be performed and

the context. affordance returns the specific perceptual features that need to be

searched in the environment. This allows goal manager to direct the attention

of low-level perceptual systems like the vision system (vision) to perform searches

in a focused manner, only looking for perceptual features relevant to the applicable

rules in affordance. The presence or absence of the searched perceptual features

(along with perceptual uncertainty information) is passed back to affordance,

which subsequently performs uncertain logical inferences (logical AND and modus

ponens) on the rules.

In dialogue-driven tasks, goal manager receives language based goals via
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the natural language pipeline (asr → nlu → dialogue), while the belief compo-

nent (bel or belief) is the recipient of language-based knowledge. belief maintains

a history of all declarative knowledge passing through the architecture and is capable

of performing various logically-driven knowledge-representation and inference tasks.

Thus, it serves as a convenient holding-area for cognitive affordance information par-

tially processed through the natural language pipeline, which can then be retrieved

and processed by affordance.

Integrating affordance into diarc, or any cognitive architecture for that

matter, requires more than simply depositing it into the system. Various other com-

ponents (goal manager, vision, belief, etc.) must also be modified so they

can provide the additional capabilities required for cognitive affordance process-

ing. For example, the natural language pipeline must be updated to allow for the

recognition and understanding of cognitive affordance related words (“cutting”, “sit-

ting”,“enclosing”, etc.), and goal manager must be updated to recognize these

semantic representations and consult affordance at the appropriate points in ac-

tion selection and execution. In the next sections, we will discuss in more detail the

specific architectural modifications, and their resulting functionality which enables

these new operations.

As an additional benefit, these modifications provide the architecture with

the new ability to understand references to objects by their affordance (e.g., a knife

as not just an object with some visual property, but as an “object used for cutting”).

An affordance-enabled cognitive robotic architecture also allows an agent to account

for context, and helps constrain and guide behavior. Actions no longer need to be

performed the same way each time, but can vary depending on context (grasping a

knife can be done differently depending on what the context requires). For example

a kitchen helper robot may grab a knife differently if the context of the grab is that

the robot will use it to cut something, as opposed to the robot grabbing it so it can

be handed to a human. Or it might carry plates of food differently in the context of

serving them versus the context of busing a table.
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5.3.2 Learning Affordance Rules from Instruction

As mentioned earlier, we will use as our simple guiding example of the instructions

“a knife is often used for cutting” and “to pickup a knife grab it by the handle”

given to a robot that does not know an epistemically uncertain (“often”) functional

affordance (“cutting”) of a knife, or its context-sensitive (“pick up”) grasp affordance

(“by the handle”).

We previously outlined how the affordance model described in Section 5.2

can be integrated into a cognitive robotic architecture to expand the capabilities of

the robot. This integration also gives that model a mechanism through which new

rules can be added on the fly, allowing it to better adapt to and represent real world

scenarios. In order to do this, various diarc components must be extended. Natural

language utterances that contain cognitive affordance rules must be converted to

general purpose facts stored in belief, and then used by affordance to generate

the rules described in Section 5.2, which can then ultimately be used to perform

uncertain logical inference. With these extensions to existing diarc components

we are able to leverage diarc’s mechanisms for learning through instruction (see

[SKO+17]) to enable learning new affordance rules about concepts that the agent

already understands as well as completely novel concepts which have been learned

on the fly.

The role of the Natural Language Understanding component is converting the

text form of spoken utterances into a semantic form which can be understood (used)

by the other components within diarc. We extended this component through the

addition of new parsing and pragmatic inference rules which enable the generation

of new semantic forms.

In order to learn from natural language instructions, a cognitive robotic archi-

tecture must be able to ground the content of the utterances containing the instruc-

tions in terms that it is able to understand. affordance understands affordance
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rule descriptions which are represented in the predicate form,

implies(antecedents, consequents, confidence),

where the predicate’s arguments represent the antecedents, consequents, and confi-

dence interval of an affordance rule. The natural language processing components of

diarc (See Figure 5.1 for asr, nlu, dm) convert spoken language into a predicate

of this form and assert it into belief.

When an utterance is spoken to the agent, the speech recognition component

(asr) converts the acoustic speech signals to text. The natural language understand-

ing component (nlu) receives the utterance in text form from the speech recognition

component and performs two steps of processing. The first step parses the text into

a form that can be used by the rest of the system. The second performs pragmatic

inference to add a notion of the speaker’s intent to the representation of the utterance

[SBC+13].

In the parsing step, the natural language understanding component uses a

parser to determine the syntactic structure and the semantic interpretation of the

utterance. The parser used in this configuration of diarc is an extended incremen-

tal version of the Combinatory Categorial Grammar (CCG) parser from [DSBS09],

described in more depth by [SKO+17]. It contains a dictionary of parsing rules each

composed of three parts: a lexical entry, a syntactic definition in CCG, and a seman-

tic definition in lambda calculus. An example set of rules can be found in Table 5.1.

These rules are a subset of the complete set of rules used by the system. They are

selected because of their relevance to the empirical demonstration in Section 5.4.

An example of a cognitive affordance rule spoken in natural language and its

accompanying semantics are,

“To pickup a knife grab it by the handle”,
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Table 5.1: A subset of the relevant rules used by the natural language understanding
component (nlu).

Label Syntax Semantics
to (S/C)/C λxλy.implies(x, y, high)
pickup C/NP λx.pickUp(?ACTOR, x)
a NP/N λx.x
knife N knife
grasp C/NP λx.grasp(?ACTOR, x)
the NP/N λx.x
by (NP/NP)\NP λxλy.partOf(x, y)
handle N handle

STATEMENT (Sam,self ,implies(pickUp(self , knife),

graspObject(self , partOf (handle, knife)), high)).

Here, “Sam” is the name of the human (and trusted source) speaking to

the robot. This representation denotes a statement from Sam to the agent whose

semantics are the implies predicate, above.

The parsing step produces a notion of the meaning of the spoken utterance.

The pragmatic inference step uses that meaning and a set of inference rules to de-

termine the speaker’s intention. The pragmatic inference system used in our con-

figuration of diarc is described in work by [SBC+13]. In the case of our working

example the semantic representation generated in the parsing step matches the left

hand side of the rule,

STATEMENT (A,B ,X ) =⇒ wantBelieve(A,B ,X ),

which is a general rule for utterances of the type STATEMENT, and can be inter-

preted as “when a person tells an agent something it wants the agent to believe it”.

The resulting diarc representation produced by the natural language understanding

component (nlu) is the predicate,

wantBelieve(Sam,self ,implies(pickUp(self , knife),

graspObject(self , partOf (handle, knife)), high)).
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This semantic representation from nlu is received by dialogue whose role is to

appropriately respond to utterances from other agents. In the case of our example

dlg recognizes that Sam wants the agent believe a predicate. It checks if Sam is

a trusted source of information, and if so, asserts the predicate into belief. Upon

confirmation that the information has been successfully stored, dialogue submits

a goal to goal manager to verbally acknowledge understanding.

Once the information from the utterance has been asserted into belief it

is accessible to affordance. Epistemically, an utterance is a piece of evidence

received by the agent in support of the truth of the affordance rule it represents.

Thus, we use the confidence directly to represent the degree of support for the

rule.1 The confidence value may be used to capture the inherent uncertainty in

the utterance (e.g., when qualifiers such as “sometimes” or “maybe” are used), or

the trust placed in the interlocutor (e.g., a rule taught by a superior or boss may

hold more water), or the uncertainty in speech detection mechanisms, or in some

combination of these factors. The linguistic placeholder “high” represents a preset

confidence (0.95). That value is used because the speaker is a priori known to be

trustworthy by the agent, but nothing in our system requires this particular, method

of assigning confidence values.

Functional affordances can be learned in the same way as the action affordance

describe above. For example, the utterance “A knife is sometimes used for cutting”

would be translated to the diarc predicate representation implies(knife, cutting ,mediumLow)

in belief.

[SKO+17] describes how diarc agents can learn new concepts on the fly

through natural language instruction. When the agent encounters an unknown word

it is able to infer its syntax and semantics based on the parser’s knowledge about

the syntax and semantics. In the case of utterances related to cognitive affordance
1The “confidence” here is different from the confidence measure λ discussed in Section 5.2. λ is

a singular measure of the degree of uncertainty of an uncertainty interval (somewhat akin to the
width of the interval) typically used in conjunction with Dempster-Shafer theory of uncertainty. We
can use λ when executing affordance-based commands (Section 5.3.3) and deciding which action
to perform when there are multiple choices. However, the confidence value mentioned here is used
to directly represent the degree of support for rule, i.e., it represents the single-valued precision
assigned to the rule when received as evidence via an utterance.
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inference rules, the syntax and semantics of previously unknown antecedents or con-

sequents can be inferred by recognizing the pattern of the rest of the utterance.

Novel consequents or antecedents introduced this way can be recognized in subse-

quent utterances and their representation in the set of rules in affordance will be

consistent. This enables the agent to understand cognitive affordance rules with pre-

viously unknown consequents and antecedents, which provides the agent the ability

to continuously adapt its knowledge base.

To clarify it is worth noting that the architecture proposed by [SKO+17] was

limited to learning concepts that have direct perceptual correlates (speech signals or

visual attributes), and was not able to learn and utilize non-perceptual or cognitive

concepts (like cognitive affordances). These involve non-perceivable attributes (con-

texts), and relationships between agent capabilities (actions) and perceptual entities

(visual features) all tied together in compact natural language utterances. In the

next section, we describe how an agent having learned cognitive affordance rules can

apply this knowledge immediately in a command-based task.

5.3.3 Executing Affordance-Based Commands

There are numerous examples of diarc and other cognitive robotic architectures

enabling robots to engage in task based dialogues where a human is able to instruct

a robot to perform tasks using commands given in natural language. The integration

of affordance into such architectures allows for the incorporation of affordance

information when discussing a task. This allows for a more natural dialogue, and

gives the human and robot more flexibility in the objects they discuss.

Returning to our running example of using a knife, consider a human uttering

a command to the robot: “Pass me something used for cutting.” Currently, diarc

would fail because the goal manager would not be able to handle pairing a known

action of “passing” with a non-specific object reference “something” and a functional

affordance concept of “cutting.” Moreover, even a more specific request of “pass me

a knife” would often fail, because there is no guarantee that the robot will choose to

pass the knife by grasping the blade (the normatively appropriate option), as opposed
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Figure 5.2: Left: knife; Right: Grasp candidates all across the knife. Cognitive
affordances can serve as a normative constraint when selecting one of these many
possible grasp possibilities.

to the handle, which has similar – if not better – grasp possibilities. As shown

in Figure 5.2 (taken from [SKO+17]), there are many available grasp candidates

distributed all across the knife on the handle and on the blade.

In order to understand the command, the information contained in it needs

to be grounded within the system. We start with the system knowing nothing about

knives or how to pass them. We use the features of diarc described in [SKO+17] to

teach the system what a knife is and how to pass something. At this point, the robot

knows that an observed 3D point cloud is a “knife” and that certain subsets of this

point cloud constitute “handle” and “blade”. Using the object grasping mechanism

described in [TP14] it is capable of generating candidate grasp points (from the

geometry of the point cloud) and then scoring these grasp points to determine which

ones are likely to succeed. We use a four-layer deep convolutional neural network

to make grasp predictions based on projections of antipodal grasp points contained

between fingers.

Using the approach described in Section 5.3.2, we assume that a human has

taught the robot cognitive affordance rules about a knife in three utterances as

follows,

“A knife is used for cutting”,

“To pickup a knife grab the knife by the handle”,

“To pass a knife grab the knife by the blade.”

The following predicates are produced in belief, as described earlier,
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implies(knife, cutting , high),

implies(pickUp(self , knife), graspObject(self , partOf (handle, knife)), high),

implies(pass(self , knife), graspObject(self , partOf (blade, knife)), high).

Now that the system understands how to pass knives in the context of cutting we

can instruct it to do so using the natural language mechanisms described earlier,

1. Utterance: “pass me something used for cutting"

2. Parse: INSTRUCT (Sam, self , pass(self , usedFor(something, cutting)))

3. Relevant Pragmatic Rule:

INSTRUCT (A,B ,X ) =⇒ want(A,X )

4. diarc Semantic Representation:

want(Sam, pass(self , usedFor(something , cutting)))

5. Submitted Goal Predicate:

pass(self , usedFor(something , cutting))

Upon goal submission goal manager executes the action script associated with

the goal. An action script is hierarchically organized with actions and sub-actions,

with bottom-level actions representing commands issued to the action component

(motion). The hierarchy for the “pass” action is shown in Figure 5.3. Executing

an action script of this form involves performing a preorder traversal of its tree. At

each node, we perform three operations for applying learned affordances, in addition

to the operation related to the action itself.

First, an affordance request is sent to affordance to getFeatures(), which

involves assimilating newly learned affordance rules, identifying relevant affordance

rules and returning perceptual invariants (F) from the antecedents.
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Figure 5.3: Key affordance-related operations during action execution using an ex-
emplary pass action script. For every node in the action tree four operations are
performed: extracting perceptual features and contextual items from the relevant
affordance rules, running a visual search to determine whether these features exist
in the agent’s environment, performing inference with the rules and observations to
obtain constraints on actions, and performing the action with inferred constraints.

affordance queries belief for any new implies(X,Y, Z) predicates it may

have learned since its last call. affordance maps the arguments into the per-

ceptual invariants (F), contextual items (C) and affordances (A) in the affordance

model. Here, we assume that context itself is a higher-order action and therefore is

captured as a functor-name in the diarc semantic representation of the utterance.

Thus, “pass” is the action context in implies(pass(self , knife), graspObject(self ,

partOf (handle, knife)) high). We recognize that context is not always knowable or

definable in advance, but in this situation, contextual information is explicitly pro-

vided in the utterance, and is therefore available for the system to use. In other

instances, the context may be more implicit and the agent may need to infer it;

the proposed approach does not preclude this sort of inference because the affor-

dance model is generalizable to capture context predicts regardless of how they are

obtained, and that is the subject of future work. The perceptual invariant (F) is

available in the argument to the action context and thus, for example, “knife” is a

perceptual invariant to be added to the rule. The affordance information (A) is avail-

able from consequents where the “graspObject” predicate is flattened. This process,

leads to the following affordance rules in our motivating example,

r1 def
= knife(K ) =⇒

[0.95,1]
findObject(cutting , knife(K )),
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r2 def
= knife(K ) ∧ context(C = pickup) =⇒

[0.95,1]

graspObject(knife(K), handle(P ), partOf (P,K)),

r3 def
= knife(K ) ∧ context(C = pass) =⇒

[0.95,1]

graspObject(knife(K), blade(P ), partOf (P,K)).

Once the rules have been updated to include new additions from belief, af-

fordance selects the rules relevant to the current situation. While we do not pro-

vide an in-depth comparison of various rule-selection approaches, we take a straight-

forward approach in selecting those rules relevant to the current action (i.e., the

current active node in the action tree) and affordance. We select rules with con-

sequents containing functor names that match the current action. This is possible

since the syntax and semantics of the affordance predicates match the grounded rep-

resentations of actions in goal manager and motion. In addition to the current

action, we use goal predicate information (including affordance) obtained from the

current command to further prune the rules, if necessary. affordance obtains this

information by querying belief for usedFor(X ,Y ).

During the “find” action, the only match is rule r1 and thus the only rule

that is selected is associated with functional affordance of the knife. The output

from getFeatures() is then sent as a search request by goal manager to vision to

locate them in the agent’s visual field of view. For example, the perceptual invariant

(knife(K )) obtained in the “find” action is then sent back to goal manager, which

then initiates a visual search to look for a knife. Upon finding a match, vision

provides a detection confidence for the object it has identified as being a knife and

affordance uses this confidence to perform inference to determine if the deduced

action “find” is above a certain confidence threshold. If so, the object identified as a

knife will be selected for further processing.

If a representative visual object is identified, then a second request is made

to the affordance component to getAffordance(), during which affordance inference

is performed and the best action or object constraint is returned. The constraints

are then used in connection with the motion commands and sent to motion. Thus,
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instead of the general command to grasp a knife, which could result in the agent

selecting one amongst a countless number of high-scoring grasp candidates on the

knife, the agent may be constrained to only selecting those on the handle.

At the next node (grasp), this process is repeated, but now there are two

rules associated with grasp, however only one is associated with the context of “pass.”

Thus, inference is performed on this one rule and the constraints knife(K ), blade(P),

partOf (P ,K ) is returned and used for identifying grasp points on the blade of the

knife. The agent can then correctly (from a normative standpoint) passes the knife

by the blade.

5.4 Evaluation

We take a two-step approach to evaluating the affordance-enabled cognitive robotic

architecture. First, we evaluate whether the system implements a correct algorithm

(i.e., is it taking the correct actions when instructed with a cognitive affordance-based

natural language command?). We do so through an extended simulation, in which

the entirety of the architecture was put to the test without external noise or sensor

fluctuations that typically occur in real-world settings. Clearly, empirical real-world

runs of the system are important and show how the architecture can perform, not

just in simulation, but on an embodied robot, in which real-time constraints apply.

So, in our second step of the evaluation we tested the architecture on a PR2 robot

and provide an uncut video. We describe each step of the evaluation below.

5.4.1 Simulation Experiment and Empirical Demonstration

We first tested the correctness of the approach in an extended simulation involving

several household objects and over two-dozen rules. As noted earlier, the goal was to

be able to test the proposed approach in a simulation without perceptual and sensory

noise experienced in the real world in order to focus on evaluating the correctness of

the various underlying algorithms.

For the experiment we considered the following eight household objects, each
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composed of two parts: Knife (handle, blade), spatula (handle, blade), spoon (han-

dle, bowl), shoe (upper, sole), hammer (handle, head), glass (bowl, stem), mug (han-

dle, barrel), screwdriver (handle, shaft). We considered five different affordances in

the spirit of those used in computer-vision datasets associated with affordance de-

tection [MTFA15, Var15]: containing, cutting, pounding, rolling, and poking.

We restricted the agent’s action repertoire to the actions pass, pickUp, and

pointTo. Unlike pass and pickUp, pointTo involves finding but no grasping. With

these objects and actions, we generated 15 different commands (5 affordances times

3 actions) of the form “[action] something used for [affordance]” (e.g., point to some-

thing used for pounding).

We are interested in learning functional affordances and action affordances

that contain a notation of confidence. To capture this, we used four terms to repre-

sent different degrees of confidence: occasionally, sometimes, often, generally, which

we then mapped to specific numerical values [KC15]. Thus, given eight objects, five

affordances and four uncertainties and three actions, we can generate 288 possible

affordance rules (160 functional affordance rules and 128 action affordance rules).

In any given learning scenario, the agent is taught a set of rules chosen from

these 288 possible rules, thus generating 2288 different possible learning scenarios.

Also, since we have eight objects, we can generate 256 possible scenes involving these

objects, which combined with the 15 possible commands we can give the agent 3840

different problem situations (scene-command combinations). Testing the proposed

architecture across all these possible learning scenarios (3840 ∗ 2288) and problem

situations is infeasible.

Instead, we evaluate the system by (1) choosing a random subset of our

evaluation space, and (2) establishing some general performance expectation for

the system in this evaluation space. We limit our evaluation space by randomly

choosing 10 different scenes and testing the agent’s performance for all 15 commands.

With regards to the selection of rules, we arbitrarily choose two different rule sets

representing two different normative standards and provide some expectations for

how we expect the agent to act based on these two distinct learning scenarios. In
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Scenario A, for each of the five affordances, we generated a list of objects (ranked

highest to lowest confidence) that possess this affordance. In Scenario B, we reversed

the ranking of objects. For example, in Scenario A, a mug is top-ranked object for

the containing affordance while a shoe is a bottom ranked (but still feasible) object.

While, in Scenario B, the shoe is top-ranked and the mug is bottom ranked. These

two scenarios represent our ground-truth rules and Table 5.2 shows these values.

Table 5.2: Ground Truth rules in Scenario A. Scenario B can be obtained by reversing
the list of each affordance. Point confidences in parentheses.

Affordance Generally Often Sometimes Occasionally
(0.95) (0.75) (0.5) (0.25)

containing [mug, glass] spoon shoe
cutting knife screwdriver [spatula,spoon]
pounding hammer shoe spatula mug
rolling glass screwdriver
poking screwdriver knife

We used Table 5.2 to derive functional affordance rules of the form “[object]

is [uncertainty] used for [affordance]” (e.g., “a spatula is sometimes used for pound-

ing"). For action affordances, we generated 16 rules corresponding to physical grasp

affordance rules in the pass and pickup context for all eight objects, with a single

confidence setting of “generally.” For example, “To pass a shoe, generally grab the

shoe by the sole.” Of the 288 rules initially stated, many are somewhat nonsensical

by our own normative or practical standards (e.g., a mug being used for cutting).

However, the robot does not know this, and we therefore expect the robot to be able

to perform the necessary affordance inference without this additional commonsense

knowledge.

We performed multiple trials during which we generated various tabletop

scenes using combinations of the eight objects. We tested both learning sets of

affordance rules, and acting on sets of commands using the proposed architecture.

We evaluated the performance of the system by checking if the following principles

held true in all trials: (1) if all the objects are in the scene then the robot must select

the top-ranked object for the required affordance, (2) if the top-ranked object is not

available, then the robot must select the next lower ranked object, (3) if there is more
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than one top-ranked object with equal measures of confidence, then the robot may

select either, and (4) if there are no objects available with the required affordance,

the robot must tolerate the failure condition and provide a suitable response.

We ran the experiment across 10 randomly generated scenes of varying sizes

(including one with all the objects). During each run, we taught the 32 above-

mentioned rules in each of Scenario A and B, then we presented a randomly generated

scene, and issued each of the 15 commands in sequence. We ensured that set of scenes

in combination with the commands covered the above-mentioned four performance

expectations. Table 5.3 shows the general form of the two types of affordance related

utterances (Utterance Templates) our system can handle, and the component parts

of those templates that can be expanded as needed for what ever application the

system is being used for (Grounded Concepts), provided they can be grounded in

the architecture. It is important to note that these utterance types are not the only

language diarc can understand, they are added functionality that coexist with prior

functionality.

Table 5.3: High level syntax of understandable utterances, in JSpeech Grammar
Format (JSGF).

Utterance Templates
<statement > a <object> is [<qualifier>] <implies> <use> | to <goal> a <object>

[<qualifier>] <primitive> <object> <mod> <part>
<command> [now | okay | first | then] (<goal> | <primitive>) something <implies>

<use> | <primitive> <object> <mod> <part>
Grounded Concepts

<qualifier > sometimes | often | generally | always
<object > mug | knife | wine glass | spatula | spoon | shoe | screwdriver | rock
<implies> used for

<primitive> grab | grasp
<goal> pass | pickup| point to
<mod> by the
<part> red | green | blue
<use> cutting | containing | pounding | rolling

In this evaluation we are interested in whether the integrated system correctly

learned the rules from natural language expressions, and then immediately applied

this knowledge correctly to select the best action. The two learning scenarios de-

scribed above provide a ground-truth of sorts as the objects are ranked from best
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to worst in each scenario. It is important to note here that we are not interested

in evaluating robustness of the underlying low-level perceptual and action systems

themselves. Accordingly, we avoid sensor noise and motion imperfections by running

this experiment as a simulation, and focus exclusively on evaluating the proposed

architecture with affordance. Moreover, the rule uncertainties were set to four

distinct and separated values to ensure that the ground-truth rule sets themselves

were not noisy, i.e., without overlapping uncertainty intervals. Since we are evalu-

ating a normative system, we lose the ability to clearly establish a ground truth if

the underlying rules themselves were noisy. For example, if the uncertainties of a

knife and screwdriver as objects used for cutting are very close to one another and

overlapping, then which object is a better object becomes a more difficult question

and without a clear answer supported in the ground truth. Thus, given a clear

ground-truth and no sensory noise, the proposed architecture should learn the rules

and act correctly 100% of the time.

As expected, we obtained a 100% success rate with the robot inferring the

correct functional affordance and choosing the correct object (for all actions) and

choosing the correct grasp locations (for pass and pick). We observed this success

rate across all scenes measured. As one example, when all the objects were pre-

sented, the robot chose the mug when asked to select an object with the containing

affordance. Likewise, the robot correctly identified top-ranked objects for each of

the four affordances. This meant that for Scenario B, the robot correctly identified

the shoe as being the best candidate with a containing affordance.

Our simulation further suggests that any non-100% performance must be due

to sensor noise. If the agent is unable to correctly detect that an object on the table

is in fact a knife, when asked for something used for cutting, then the agent is less

likely to find this object as a suitable candidate - affordance inference will yield an

uncertainty that might be below a threshold confidence measure described earlier.

In addition to the simulation, we further provide an empirical demonstration

of a diarc agent with a fully integrated cognitive affordance reasoning system in a

task driven dialogue involving multiple human interlocutors. In this demonstration
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we show the system’s ability to learn new cognitive affordance rules on the fly,

and to reason about these newly learned rules. A video of this demonstration is

located here: http://tiny.cc/affordanceNL2018. We use the motivating example

utterance “Pass me something used for cutting" spoken from a human to robot

running cognitive affordance-enabled diarc.

5.4.2 Commands with Implicit Affordances

Thus far, we have presented examples where the requested affordance was explicitly

stated, such as “pass me something used for pounding.” However, the approach

presented in this chapter is not limited to such cases and is capable of handling cases

where the requested affordance is not explicit. For example, a command “pound the

nail” contains an implicit request for a tool that can do the pounding. In some sense,

the command might actually be suggesting “pound the nail with something used for

pounding,” without saying so explicitly. As before, the robot is taught the normative

affordance rule that a hammer can be used for pounding. But, in order for the

robot to be able to make use of this affordance rule, it must already have an action

script that describes how it should perform the pounding action. Much like the

action script depicted as a tree in Figure 5.3, we consider an example action script

for pound that is composed of a pickup action. It also contains a moveAbove(nail)

action and a series of repeated raise and lower actions to generate the pounding

motion. The pickup sub-action, in turn, contains find , grasp and moveTo(up) sub-

sub-actions. The pound action can be made more complex containing visual actions

of sensing the depth of the nail and identifying when to stop pounding.

In addition to this action description, the action script needs additional

knowledge to handle cases when the action is called with a tool explicitly mentioned

(e.g., pound the nail with the hammer) and when the action is called with the tool af-

fordance implicitly suggested (e.g., pound the nail). In the implicit case, the highest

level pound action must be able to supply a usedFor(something, pounding) argu-

ment to the child pickup action. Thus, the pound action must first review the argu-

ments of the goal predicate pound(self , nail) received and parsed from the command
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utterance and then provide the arguments self and usedFor(something, pounding)

to the the pickup action. Now, it is possible that the implicit command “pound the

nail” was intended to be interpreted as “pound the nail with the hammer ”. In this

case, the action script would need to consider other factors (e.g., the intent of the

speaker) in order to determine what exactly was left unsaid – i.e., was it that the

speaker intended for the agent to use a specific tool, namely the hammer, or any

tool with a pounding affordance.

With this translation, the rest of command execution proceeds as described

in the previous sections. This example shows that with suitable modifications to

the action script, we can handle commands that contain affordance information

explicitly as well as implicitly. It is important to reiterate a key assumption: that the

robot is already equipped with the above-mentioned pound action script. Learning

these action scripts (from natural language or however else) as well as determining

interpretations of unsaid action arguments is beyond the scope of this chapter and

subject of ongoing work.

5.5 Discussion

The above walk-through and simulation show how a set of new social norms, pre-

viously unknown to the agent can be acquired, in one-shot, from natural language

instruction. The process of learning an implication rule of the form described is

generalizable to other rules as long as the agent is familiar with the entities being

described. That is, the agent already knows what a knife, handle, and blade mean.

Critically, the new knowledge of the social norm encoded as an affordance rule is now

available for inference by any and all subsystems in a cognitive robotic architecture.

As shown in the evaluation, these rules are put to immediate use by means of a

follow-up request from the human. These are, to our knowledge, the first demon-

strations of an agent learning an unknown affordance norm from natural language

instruction and then immediately performing an action sequence conforming with

the rule that it just learned. Moreover, an affordance norm of this sort may be ben-
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eficial to not just an action subsystem of an architecture, but to planning and other

subsystems. A general rule-based structure, coupled with an inference mechanism

presented here allows these other subsystem to query and access these affordance

norms, as well.

Note that the above demonstration also shows that the instructions and ac-

tions do not have to pertain to a particular set of sensors or actuators and do not

depend on a particular robotic platform. Rather the same inference and learning

mechanisms can be carried out in other agents with different action capabilities. It

is also important to note that the proposed approach and learning methodology are

not limited to the particular examples demonstrated, but being implementations of

a general framework for reasoning about affordances to guide normative behavior,

are only limited by the agent’s knowledge of natural language as well as its sensory

and actuation capabilities (e.g., a Nao robot may not possess adequate gripper ca-

pabilities to grab a knife, but will still be able to reason about the normative aspects

of other action capabilities like pointing and can still learn from instructions about

these normative aspects of these actions).

Finally, to demonstrate the extent of learning, we note that current state

of the art vision systems can identify and label objects and object features with a

high level of accuracy. Thus, an agent can potentially become familiar with names

and descriptions for thousands of objects. Along the same lines, agents can be

trained through existing methodologies to build a substantial vocabulary and gram-

mar allowing for descriptions of an infinite possible set of descriptors for perceptual

invariants, contexts and actions. Hence, it is not possible, nor does it make sense, to

evaluate the system exhaustively by generating every possible combination of rules

and checking whether the agent can learn these rules. The strength of our system is

that no mater what set of rules we give it, provided we have the sensory information

to ground them, it will be able to learn and reason about affordances.
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5.6 Related Work

While affordances have been studied for decades in philosophy and psychology, few

computational approaches have been presented for modeling them in normative con-

texts, and none for learning them from natural language, which is an important open

problem in affordance-related research in robotics [ZHL+17]. We believe that the pro-

posed approach represents a significant advance over existing approaches. Existing

work in cognitive robotics as well as in AI originated from the general philosophical

and psychological theories and diverged in two directions: statistical approaches and

ontological approaches. The statistical approaches modified and implemented these

general theories in specific domains using statistical formalisms to represent and

compute affordances [Ste02, MLBSV07, AMC14, CPCI15, UNSO15, KS16b]. The

affordances were modeled as a statistical relationship between an object, actions per-

formed on the object and the effects of those actions (i.e., success or failure). There

has been some preliminary work to extend this approach by incorporating “environ-

ment” as a fourth entity, thereby providing some degree of situatedness and context

[KSTN11]. The ontological approaches focused on developing a detailed knowledge-

ontology based on conceptual, functional and part properties of objects, and then

used a combination of detection and query matching algorithms to pinpoint the af-

fordances for objects [Var15]. However, neither approach considered the influence of

social or normative (and non-perceptual) factors in affordance perception.

More recently [SRZ16] presented a framework for reasoning about “social

affordances” and provide a system that can act in social scenarios. However, the

underlying affordance model is still largely devoid of contextual or normative rea-

soning, i.e., non-perceivable aspects of affordances, and is focused just on physical

geometries of objects, i.e., perceivable aspects of affordances, in these scenarios (in

this case skeletal geometries). Other work in robotics has explored mechanisms

for detecting context and social contextual perception at both an individual level

[OR15, NR15, PFS+15], as well as in group-level activities [OA14]. However, these

approaches do not provide a generalized model or integration of normative affordance
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perception of objects in a robotic architecture.

Thus, more generally, despite these past efforts, the task of computationally

modeling affordances faces many challenges that have not been overcome in the previ-

ous work. These past efforts do not allow for reasoning about normative affordances,

and from an architectural standpoint, most affordance processing is subsumed by the

sensor processing (e.g., vision) or higher-level cognition (e.g., planning), which does

not allow for an effective interaction between top-down and bottom-up processing of

information in these past systems. Moreover, none of the current approaches show

how affordances can be learned from natural language.

5.7 Conclusions and Future Work

The expressive framework of cognitive affordances treats an affordance as normative

condition-action rule. In a sense, it extends the traditional Gibsonian notion of

an affordance as a relation between an object and an action to include other non-

perceptual aspects influencing action selection such as context, intentions, and social

conventions. In this chapter, we provide two contributions: (1) a grounding and

integration of this theoretical framework within a robotic architecture, and (2) an

approach to learning cognitive affordances from natural language instruction. To

accomplish this task, we extended recent work in instruction-based one-shot learning

to be able to parse and learn cognitive affordance rules. The predicates and terms

that constitute the rules contain perceptual and action concepts that are grounded

within the DIARC cognitive robotic architecture. For each action that the robot

must perform, we proposed several operations that obtain sensory information from

the robot’s perceptual system, perform inference over a set of relevant cognitive

affordance rules that constrain the action, and execute the constrained action. We

evaluated the approach through an extended simulation and empirical real-world

runs of the proposed robotic architecture implemented on a PR2 robot. Critically,

we were able to show that not only can an agent learn normative behavior from

instruction, but immediately apply this newly acquired knowledge to the task at
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hand. This to our knowledge is the first conceptual and robotic demonstration of

an agent learning an unknown affordance norm from natural language instruction

and then immediately performing an action sequence conforming to the rule that

it just learned. We believe that these capabilities are necessary to allow agents to

work effectively with humans and dynamically learn and perform tasks in a way that

respects prevailing social norms. The approach presented in this chapter does not

currently incorporate commonsense knowledge about objects and their similarity

to other like-objects. Thus, the cognitive affordance rules that are learned from

natural language are limited to the particular object explicitly taught. One direction

of future work is to explore how to induce new cognitive affordance rules using

commonsense knowledge. For example, we would like for the system to know and

use the fact that knives and screwdrivers are both tools that have pointed ends and

must be handled carefully. Then, when we teach the robot how to safely pass a knife,

we would like for it to subsequently induce a comparable rule for the screwdriver, as

well.
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Chapter 6

Cognitive Science of Norms

Representations

In this chapter, we take on the challenge of deepening our understanding of how

humans mentally represent and learn norms and what characteristics of norms are

captured in this representations. We then use these findings to inform a computa-

tional model for learning norms from behavioral observations.

6.1 Introduction and Motivation

Someone’s cell phone begins to ring in the library. The person quickly answers it

by whispering “hold on," then leaves the library and takes the call in a normal voice

outside. The person understands that taking a phone call in the library is not socially

acceptable, though briefly whispering is. Somehow, the situation activated a set of

norms in this person’s mind, including: “when someone calls you, you should answer

the phone"; “when in a library, you must not talk on the phone"; “when in a library,

you may briefly whisper."

Humans living in social communities function more effectively and peacefully

when their actions are guided by a shared set of norms [Bic06, UM77]. The abil-

ity to represent and follow norms has many advantages: Norm-consistent actions

increase multi-party coordination and cooperation and thus benefit the community
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as a whole. Norms also simplify people’s action selection and standardize behaviors

across time and generations. And norm-consistent actions are more predictable and

understandable [MSA17b].

But how does the human mind represent norms, and how are they activated

and learned? Surprisingly, there are few cognitive science approaches to the central

phenomenon of norms. Logical and specifically deontological approaches have been

proposed to formally represent a system of norms [BAB06, SM14, PS09, Bel10].

These are important starting points, but their formalizations do not necessarily cor-

respond to how norms are represented in the human mind. By contrast, a cognitive

science approach would aim at an account of how norms are cognitively represented,

how they are activated in relevant situations, and how they are learned in the first

place. Here we take a first step toward such an account, following a recent theoret-

ical proposal [MSA17b]. We introduce a basic formal representation of norms that

allows us to examine the mentioned cognitive properties of norms (representation,

activation, and learning), and we ask what computational models can capture these

properties, and what algorithms could learn norms.

Our chapter has three main parts. In the first, we present a novel belief-

theoretic norm representation format that explicitly captures the context-specificity

of norms and incorporates uncertainty associated with norm representations, using

Dempster-Shafer Theory [Sha76]. In the second part, we introduce experimental data

on human norm representation and activation that underscore the context-specificity

of norms and community members’ strong but imperfect agreement (uncertainty)

over norm applications. In the third part we use our formal norm representation to

ask how such imperfect norms systems can be learned by a computational algorithm

that honors several of the critical features of norms, including their context specificity

and uncertainty.

173



6.2 A Representation Format for Norms

We begin by briefly outlining our norm representation format in first-order logic

and provide some intuitions as to how context and uncertainty are accounted for in

the format. The purpose is to introduce some terminology and a minimal degree

of formalism in the proposed approach, which will later be useful in developing an

algorithm that can learn norms.

Consider a first-order alphabet L, in which we have all the standard symbols

(variables, predicates, functors) and logical connectives. In a deontic alphabet, we

further include O,F,P that denote modal operators (generally, D) for obligatory,

forbidden and permissible, respectively. In this alphabet, we define a norm, as

follows:

Definition (Norm). A norm is an expression of the form:

N := C1, . . . , Cn =⇒ (¬)D(A1, . . . , Am),

where C represents context conditions and A represents actions or states. The

norm expression states that when the contextual atoms Ci are true then the Actions

or States Aj are either obligatory, forbidden or permissible, or their negation.

This type of norm definition follows an approach to normative reasoning and

norm formalism that some of us have taken previously [MSA17b, BAB06, SM14].

In this chapter, we expand the above representation format by explicitly

accounting for uncertainty of a norm as follows:

Definition (Belief-Theoretic Norm). A belief-theoretic norm is an expression of the

form:

N := [α, β] :: C1, . . . , Cn =⇒ (¬)D(A1, . . . , Am),

where [α, β] represents a Dempster-Shafer uncertainty interval, with 0 ≤ α ≤

β ≤ 1.
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Example Consider an example of an agent reasoning about actions it can perform

or states it can enter in a library. We can represent this scenario as a Belief-Theoretic

Norm System, T , as follows:

N1 := [0.9, 1] :: in(library,X) =⇒ O state(X, quiet)

N2 := [0.8, 0.95] :: in(library,X) =⇒ P action(X, reading)

N3 := [0.9, 1] :: in(library,X) =⇒ F action(X, yelling)

N4 := [0, 0.3] :: in(library,X) =⇒ O action(X, talking)

N5 := [0.3, 0.6] :: in(library,X) =⇒ F action(X, talking)

The norms in this example have intuitive semantics. They generally state

that when agent X is in the library (i.e., in(library,X)), then the norm is activated

and the agent is obligated to enter a certain state (e.g., state(X, quiet)) or prohibited

from performing a certain action (e.g., action(X, talking). The location of the center

of the uncertainty interval generally suggests the degree of truth of the norm applying

and the width of the interval generally suggests the level of support or evidence for

that norm. So norms N1, N2, and N3 have tight uncertainty intervals close to 1

indicating a confident support for their truth. Norm N4 states that the action of

“talking" is obligatory in libraries. Although the uncertainty interval for this norm

is tight, the center is closer to zero indicating confident support for the falsity of the

norm. Finally, in rule N5 the question of whether talking is forbidden in a library

may be more uncertain, generating a wider interval centered close to 0.5, indicating

support for both truth and falsity, but a general lack of confidence in the evidence.1

A belief-theoretic norm system of this form allows the separation of evidence

from the norms themselves. The evidence may come in different forms across different

modalities and from different sources. The norm system, however, displays the

agent’s current level of belief about a set of norms that are influenced by the evidence.
1The use of deontic logic for normative reasoning is the subject of active debate. Although

further discussion of this debate is outside the scope of this chapter, we note that our proposed
approach does not require using deontic operators. We can still reason about norms and learn them
using the schema described in Definitions 2 and 3. We would simply need to replace the deontic
operators and modify the predicates slightly. Norm N5 in example 1 would become:
N5 := [0.3, 0.6] :: in(library,X) =⇒ forbidden(X, talking)
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In any given situation, the agent may not be reasoning with every norm in

a norm system. Instead, the agent may consider a subset of the system, perhaps

including only norms that are applicable to the current situation. We capture this

intuition in a norm frame, defined below.

Definition (Norm Frame). A norm frame NΘ
k is a set of k norms, k > 0, in which

every norm has the same set of context predicates and corresponds to the same

deontic operator. Thus, in Example 1, norms N3 and N5 would constitute a norm

frame.

We define a norm frame in this way because it allows for cognitive modeling

in a situated manner—that is, reasoning about behavior relevant to a specific situa-

tion. This context-specificity provides a convenient constraint that can help simplify

computation and better capture human norm representations, as introduced next.

6.3 Norm Representation and Activation in Human Data

We are currently engaged in an empirical research program that tests a number

of novel hypotheses about the cognitive properties of norms [MSA17b]. Here we

summarize two experiments that illustrate some of these properties and provide the

learning data for the norm learning algorithm we introduce in Part 3. In the first

experiment, participants generated norms relevant to a variety of contexts; in the

second experiment, participants detected norms relevant to those contexts.

6.3.1 Methodology

In the generation experiment [KAAM16], participants (n = 100 recruited from Ama-

zon Mechanical Turk, AMT) inspected four pictures, one at a time, that depicted

an everyday scene (e.g., library, jogging path; see Figure 1 for examples). While

inspecting each picture, they had 60 seconds to type as many actions as came to

mind that one is “allowed" to perform in this scene (Permissions), or is “not al-

lowed" to perform (Prohibitions), or is "supposed" to perform (Prescriptions). This
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between-subjects manipulation of norm type was constant across pictures so that

each participant answered the same question (e.g., “What are you permitted to do

here?") for all four pictures they encountered.

Figure 6.1: Four sample scene pictures used to elicit norms

To increase generalizability at the stimulus level, the total number of scenes

used in the experiment was in fact eight, four that previous participants had tended

to describe as locations (e.g., library, cave), and four that they had tended to describe

as activities (e.g., jogging outdoors, serving in a restaurant). Each participant was

randomly assigned to receive either the “location" set or the “activity" set. Item set

made no difference in the results.

The resulting verbal responses were lightly cleaned for spelling and grammat-

ical errors and responses identical in meaning were assigned the same response code,

using a conservative criterion so that variants such as “listening" and “listening to

music" were counted as distinct. The resulting data structures were then analyzed

for consensus (i.e., how many people generated a given response for a given scene)

and context distinctiveness (i.e., whether a response generated for one scene was also
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generated in a different scene).

In the detection experiment, we presented participants (n = 360 recruited

from AMT) with the same pictures, four per participant. Along with each picture,

we presented 14 actions (randomly ordered, one at a time) that a person might

perform in this context. Any given participant’s task was the same for each of their

four pictures: to consider the particular scene and judge whether each of the 14

actions is either permitted, or prescribed, or prohibited. This norm type was again

a between-subjects manipulation and hence constant across pictures. In addition,

to increase generalizability, we used two different formulations for each norm type,

summarized in Table 6.1. Formulation made no difference in the results.

Table 6.1: Eliciting Probes for Three Norm Types

Norm Type Probe formulations
Permission Are you allowed to do this here?

Are you permitted to do this here?
Prohibition Are you not allowed to do this here?

Are you forbidden to do this here?
Prescription Are you supposed to do this here?

Should you do this here?

The 14 actions assigned to a given scene under a given norm type (e.g., Li-

brary/permitted) consisted of seven “local" and seven “imported" actions. Local

actions were the seven most frequently generated actions for the given scene and

norm type in the above generation experiment—for example, the seven actions most

frequently mentioned to be permitted in the library. Imported actions were com-

prised of top-seven actions generated for other scenes (but under the same norm

type). Thus, imported actions were still frequent responses to the same norm probe,

but in different contexts.2 Table 6.2 provides an illustration of this selection process.
2We ensured that the imported actions were physically plausible in the given scene/context.
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Table 6.2: Origin of Selected Actions for Library Scene

Action Origin
Local, permitted
reading from top 7 of Library
studying from top 7 of Library
sitting from top 7 of Library
checking out a book from top 7 of Library
learning from top 7 of Library
being quiet from top 7 of Library
using computers from top 7 of Library
Imported, permitted
eating from top 7 of Beach
walking from top 7 of Cave
listening from top 7 of Boardroom
filling boxes from top 7 of Harvesting
washing hands from top 7 of Public Bathroom
running from top 7 of Jogging
talking from top 7 of Restaurant

6.3.2 Experimental Results

We begin by highlighting three findings from the generation experiment.3 First, even

though people were entirely unconstrained in their norm-guided actions, they showed

a great deal of consensus on the most central norms for each scenario. Table 6.3

displays (in column Consensus) the seven most frequently mentioned permission

norms in two representative scenarios, Library and Jogging, with consensus computed

as the percentage of participants who mentioned the particular action as permitted in

the scenario. (The patterns are consistent across other scenarios.) Second, the most

consensual norms are mentioned early on; in other words, what comes to mind first is

likely to be a consensual norm. Table 6.3 shows (in column Position) the average rank

position (1 = first, 2 = second, etc.) at which each action was generated, whereby

the expected position under a random distribution would be 4.2 for Library and 4.6

for Jogging. Third, the norms generated for the eight scenarios showed remarkable

context specificity. Not only do the two illustrated scenes have no norm in common
3We focus here on permissions. Prescriptions and prohibitions show very similar patterns overall,

but prohibitions differ from the other two norm types in interesting ways (e.g., less consensus, slower
activation) that will be treated in a separate investigation.
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among their top seven, but of the 56 permitted actions that were mentioned in the

top-7 in each of the 8 scenes, only 5 appeared in more than one scene.
Table 6.3: Permission Norms for Library and Jogging Scenes in the Norm Generation
Experiment

Library
Permitted Action Consensus Position
reading 84% 2.1
studying 68% 1.8
sitting 47% 3.1
checking out books 47% 4.4
using computers 32% 5.3
learning 32% 6.0
being quiet 32% 7.5
Jogging
walking 87% 1.4
running 87% 1.9
jogging 53% 4.8
talking 53% 5.1
listening to music 33% 4.3
biking 27% 4.7
looking at birds 27% 6.2

Two main results stand out from the detection experiment. First, people

showed very high consensus in affirming the permissibility of the seven local actions

for their respective scenes. For both Library and Jogging, this rate was 99%; and

across all scenes, the number was 97.2%. That is, even though some of these local

actions were actively generated as “permissible" by only a third or half of previous

participants (see Table 6.3), when directly confronted with these actions, people

almost uniformly recognized their permissibility. (Moreover, this recognition was

fast, taking only about 1100 ms on average.)

Second, participants clearly distinguished between the local and the imported

actions, accepting the latter as permissible at a significantly lower rate. For Library,

this rate was 43%; for Jogging, it was 75%; and across all scenes, it was 66.1%

(all statistical comparisons to local actions p < .001, signal detection discrimination

parameter d’ = 1.49). That is, for a given context on average, 34% of presented

actions were judged to be not permitted even though they were explicitly deemed
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permissible in other contexts.

These results suggest that norms can be activated by static photographs,

and people show high agreement in explicitly recounting these norms (generation

experiment). In a more implicit setup (detection experiment), people are fast and

almost unanimous in affirming the most important norms of a given context and

differentiate them well from norms originating from a different context. Thus, both

explicit and implicit judgments show substantial context sensitivity. If these are

some of the properties of human social and moral norms, how can they possibly be

learned, by humans and machines?

6.4 Learning Norms

6.4.1 How Do People Learn Norms?

In learning social and moral norms, people deal with multiple different norm types

(permissions, prescriptions, prohibitions), using many different learning mechanisms,

and taking input from many different sources. Here we focus on the process of

learning permission norms from simple observation, using responses from a sample of

community members described earlier in the detection experiment. Our main goal is

to put our proposed computational framework to a test. In the future we will develop

further applications (e.g., learning of obligations or learning from instruction)

Consider a person who has never spent time in a library. Upon entering one

for the first time, he observes several people reading, studying, and a few whispering.

Some sit at computers, one is eating while sitting in an armchair, although there

is a sign that says "No food or drink in the library." Our observer also sees several

people at the check-out counter, subsequently exiting the library, where another sign

says "Don’t forget to check out." Briefly, a younger person runs alongside the stacks

but then sits down next to an adult.

The number of people performing each behavior, their age, expertise, appear-

ance, perhaps responses from others, and the meaning and force of various physical

symbols will all contribute to the speed and confidence with which our protagonist
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learns the norms of a library. Below we offer a data representational format that in-

corporates these and other properties of the norm learning process, a format that can

also accommodate partial information and unknown prior probability distributions

and that can be extended to other learning mechanisms, such as verbal instruction

or trial and error.

6.4.2 Data Representation Format of Norm Learning

Consider a set S = {s1, . . . , sn} of n evidence sources. For example, an evidence

source si could be a student in the library, the librarian, or a sign at the entrance.

To simplify, we are interested in learning about a norm frameNΘ
k comprising k norms

(out of a larger possible set) that all share the same deontic type (here, permissions)

and the same general context precondition (here, library).

Let an endorsement ei,j be the ith data source’s endorsement of the jth norm,

where e ∈ {0, 1, ε}. The value ei,j is a form of truth assignment, indicating whether

the source endorses the norm to be true (1), false (0) or unknown (ε). For example,

an observation that a student is reading can be interpreted as showing that this

student endorses the norm N2 to be true in this context, hence ei,N2 = 1. The set

Φsi represents a given source’s finite set of endorsements within a given norm frame,

such that |Φsi | = k.

Informally, for a set of norms in a given context and for a particular source, we

can learn about that source’s endorsement of each norm; if we also assign a weight

(e.g., reliability, expertise) to the source, we form a data instance. Multiple data

instances (i.e., evidence from multiple sources) form a data set. More formally:

Definition (Data Instance). A data instance d = (NΘ
k , si,Φsi ,msi) is a tuple com-

prising a norm frame NΘ
k , a specific source si, a set of endorsements Φsi provided

by that source, and a mass assignment msi corresponding to the amount of consid-

eration or reliability placed on source si.

Definition (Dataset). A dataset D is a finite set of n data instances {d1, . . . , dn}.
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Some of the desirable properties of the proposed data representation for-

mat are that we can accommodate various types of sources (e.g., behavior, verbal

responses, signs and symbols), differential source reliability (mass), order effects (up-

dates can be tuned, if necessary, to the order of received data), missing and imprecise

information (we use ε to represent ignorance), lacking prior probability distributions

(we do not require any priors), and varying norm dependencies (e.g., we can capture

a correlation between the prohibition to yell and the prohibition to talk).

6.4.3 Algorithmic Learning of Experimental Data

We can now apply this representation format to the detection data we introduced

earlier. The detection experiment featured, for each scene, a norm frame NΘ
k with

k = 14 potentially permissible actions, where half of the potential actions had been

specifically identified as permitted in this scene and the other half as permitted in

other scenes (see Table 6.2). Each participant, si, indicated whether each of 14

actions was in fact allowed in this scene, providing responses of yes (1) or no (0)

or no response (ε), thus forming a set of endorsements Φsi , with |Φ| = 14. In this

particular case we treat all sources as equally reliable, hence carrying identical msi

weights.

With these representations in hand we can formally define the norm learning

problem within our framework and set the stage for an algorithm to analyze evidence

and derive a norm structure for a given context in a given community. We remind

the reader that, according to Definition 2, any norm (e.g., with respect to reading

in a library) has an uncertainty interval [α1, β1] associated with it, which reflects

the quality and consistency of the evidence for a given norm to hold. The learning

problem thus becomes a parameter learning problem for discovering the values of

the uncertainty interval for each norm in a norm frame:

Definition (Norm Learning Problem). For a norm frame NΘ
k and dataset D, com-

pute the parameters α1, . . . , αk, β1, . . . , βk of that norm frame.

As noted earlier, each data instance d represents a potential arrangement of
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true and false values for each of the norms in a frame. Setting aside the possibility

that ei,j = ε, each data instance thus provides a k-length string of 1s and 0s (a

given participant’s response string in the detection experiment). This string is a

sample of the normative endorsements in the given community. The norm learning

algorithm represents each string as a hypothesis in a set of hypotheses (termed Frame

of Discernment in Dempster-Shafer theory) and assigns uncertainty parameters to

each norm, updating those values as it considers each new data instance. Algorithm

1, displayed below, achieves this form of norm learning from a human dataset.

Algorithm 6.1 getParameters(D,NΘ
k )

1: D = {d1, . . . , dn}: Dataset containing n data instances for a norm frame
2: NΘ

k : An unspecified norm frame containing k norms N
3: Initialize DS Frame Θ = {θ1, . . . , θ2k}
4: m(Θ) = 1
5: for all d ∈ D do
6: for all N ∈ NΘ

k do
7: Set learning parameters p1 and p2

8: Bel(N|d) = Bel(N∩d)
Bel(N∩d)+Pl(d\N )

9: Pl(N|d) = Pl(N∩d)
Pl(N∩d)+Bel(d\N )

10: Bel(N )new = p1 ·Bel(N )prev + p2 ·Bel(N|d)
11: Pl(N )new = p1 · Pl(N )prev + p2 · Pl(N|d)
12: end for
13: Set frame Θ with Bel(N )new and Pl(N )new
14: end for
15: for all N ∈ NΘ

k do
16: αN ← Bel(N )
17: βN ← Pl(N )
18: end for
19: return α1, . . . , αk, β1, . . . , βk

The algorithm iterates though each data instance in the data set (line 5)

and, per instance, through each norm in the norm frame (line 6). For each iteration,

we first set the hyper-parameters p1 and p2 (line 8) that specify how much weight

the algorithm will place on previous learned knowledge (p1) and on each new data

instance (p2). These hyper-parameters are then used to compute a conditional belief

and plausibility for a norm given that particular instance of data (lines 9,10). The

conditional beliefs and probabilities then yield an updated belief and plausibility for

each norm (lines 11, 12). Finally, the algorithm updates the uncertainty interval for

each norm with the new belief and plausibility values.
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The result is a set of belief-theoretic norms (norms accompanied with uncer-

tainty intervals), where the width of the uncertainty interval indicates the amount

of support for the norm (which may vary, for example, as a function of number of

respondents in the human data sample) and the center position of the interval should

correspond to the level of agreement in the human respondents’ endorsement of the

norm.

To put this algorithm to the test, we selected, from our detection experiment,

a norm frame of 6 (out of 14) actions for the context of Library and a frame of 6 (out

of 14) actions for the context of Jogging Path. However, we wanted to capture the

context specificity of norms and constructed the frames such that 4 actions (running,

sitting, walking, and washing hands) were the same in each frame, albeit differentially

endorsed in the two contexts (e.g., running was clearly not permissible in Library

but very much permissible in Jogging). Thus, the algorithm had to track the norm

value of a given action not in general, but conditional on the specific context. If

the algorithm succeeds it should recognize which actions people consider permissible

and which ones they consider impermissible, for each of the two contexts, and even

for those actions that occur in both contexts.

Figure 6.3 illustrates this success. We display single runs of the algorithm

across the dataset. In the single runs, the algorithm considers each data instance

(each of 30 participants’ judgments) in each context once (in a fixed order), leading to

wide uncertainty intervals at first, but narrower ones as the number of data instances

increases (up to the maximum of 30) . We also performed iterative runs (not shown),

in which the algorithm considers the dataset multiple times, each time randomly

selecting a possible order of instances, and converging on an optimal estimate of the

norm endorsements in the given community. These estimates are highly comparable

to the end points of single runs after 30 data instances.
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6.5 Context-Shifting

In this next section, we extend the ideas stated thus far to consider how agents

can learn norms when there is contextual uncertainty. Specifically, we propose a

norm representation scheme (shared by all agents) that introduces a novel deontic

modal operator, which equips deontic logic with context-specificity and uncertainty

by relying on a formal framework called Dempster-Shafer theory [Sha76]. We also

provide an algorithm that learns norms and honors several critical properties of hu-

man norms. Crucially, we suggest that the proposed approach provides the necessary

computational infrastructure needed for agents to learn a set of shared norms, as well

as to communicate about and address individual differences.

6.6 Context-Specific, Belief-Theoretic Norm Represen-

tation

The cognitive science literature offers few investigations into the structure and rep-

resentations of norms. Logical and deontological approaches have introduced formal

representations of norm systems [BAB06, SM14, PS09]. Though such formalizations

suggest possible representations, they do not necessarily capture the properties that

characterize actual human norm representation and learning.

6.6.1 Mathematical Formulation of a Norm System

We define the logical form of norms as follows:

Definition (Context-Specific Norm). A context-specific norm N is an expression

of the form:

N def
= DCA (6.1)

for a formal language L together with deontic modal operators for obligatory (O),

forbidden (F) and permissible (P), respectively (collectively, denoted by D). C ∈

L represents a context condition, and A ∈ L represents an action or state. The
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norm expression states that in context C the action or state A is either obligatory,

forbidden, or permissible, or not obligatory, forbidden or permissible.

This norm definition builds on an approach to normative reasoning and norm

representation that some of us have taken previously [MSA17b, BAB06, SM14,

SSA+17]. But we extend this approach by explicitly accounting for uncertainty

about a norm representation as follows:

Definition (Belief-Theoretic Norm). A context-specific belief-theoretic norm is an

expression of the form:

N def
= D[α,β]

C A (6.2)

where D[α,β]
C is an uncertain context-specific deontic operator with [α, β] representing

a Dempster-Shafer uncertainty interval for the operator, and 0 ≤ α ≤ β ≤ 1. An

uncertain deontic operator reduces to a standard deontic operator when there is no

uncertainty, i.e., when [α, β] = [1, 1]

Example Consider an agent deliberating about actions it may or may not perform

in a library. This situation can be represented as a Belief-Theoretic Norm System,

T , as follows:

N1
def
= O[0.9,1]

Lib quiet

N2
def
= P[0.8,0.95]

Lib reading

N3
def
= F[0.9,1]

Lib yelling

N4
def
= O[0,0.3]

Lib talking

N5
def
= F[0.3,0.6]

Lib talking

(6.3)

The norms in this example have intuitive semantics. They specify that in

the library (i.e., Lib), the agent is obligated (O) to be in a certain state (quiet) or

is prohibited (F) from performing a certain action (talking), each with associated

uncertainty intervals. The center of the interval denotes the point estimate of sub-

jective certainty for the believed applicability of the deontic operator, and the width
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of the interval denotes the level of evidence for that belief. Norm representations

N1, N2, and N3 have narrow uncertainty intervals close to 1, indicating strong sup-

port for an agent’s confident belief (e.g., in the obligation to be quiet in the library).

Norm N4 also has a narrow uncertainty interval but a center close to zero, indicating

strong support for the belief that the operator does not apply. Finally, N5 has a

wider interval and is centered near 0.5, indicating little evidence for either the belief

in the norm’s applicability or the belief in its inapplicability.

A belief-theoretic norm system, as proposed, enables the clean separation of

norms from the evidence supporting them. The evidence may arrive in disparate

forms from different sources and through a variety of sensors. The norm system

then represents the agent’s current belief about the set of extant norms, in light of

the available evidence.

An agent may have a vast set of norm representations, but in any given

situation, the agent is unlikely to reason with every one of those norms. The agent

may instead consider only a subset of the entire system, such as those norms that

apply to the specific context in which it finds itself. This idea is captured by a norm

frame, defined below.

Definition (Norm Frame). A norm frame NΘ
k is a set of k norms in which every

norm has the same set of context conditions and the same deontic operator. Thus,

in Example 1, norms N3 and N5 would constitute a norm frame.

This definition of a norm frame enables us to model an agent’s reasoning

about behavior in a context-specific manner. Such context specificity constrains and

simplifies computation and better captures properties of norm representations in

humans, as introduced next.

6.6.2 Evaluation: Dynamic Context Shifting

We selected two smaller norm frames to evaluate the algorithm: six permission norms

each for the contexts of library and boardroom. We constructed norm frames such

that four permitted actions (reading, talking, walking, and listening) were the same
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in each context but with different endorsement rates (e.g., walking was hardly per-

missible in the boardroom but permissible in the library). If the algorithm captures

the context-specificity of norms it would have to track the norm endorsements for any

given action not in general but conditional on the specific context. We also included

two permitted actions for which we had data for one context but not for the other:

using computers in the library and drinking in the boardroom. This allowed us to

evaluate the algorithm’s ability to handle ignorance and incomplete information.

The algorithm also had to track how these norms are learned when observa-

tions are made in dynamic situations involving changing contexts and general con-

textual uncertainty. In an ideal learning scenario, the agent would obtain a dataset

containing a collection of observations from a single context. The generation ex-

periment described earlier (Section 6.3.1 provided such an ideal dataset. However,

learning in the real world is far less perfect; data are often obtained in a streaming,

unfolding manner through a series of observations made during a certain time win-

dow. Observations are made in context, the identity of which might be uncertain

and may even change over time.

Consider the example of a norm-learning agent moving through a library

between the reception, stacks, and through various conference rooms. At any given

moment, the agent may not be entirely certain if it is in one context or another. As

it approaches a boardroom, near the threshold, the agent may not be sure if it is

within the confines of the boardroom context or within the confines of the general

library context. Normative behavior is often learned in this messy manner through

observations in changing and uncertain contexts.

Moreover, this contextual uncertainty can influence the agent’s normative

beliefs themselves, which in turn can result in deviations in normative behavior.

Two identical agents who observe the same sequence of actions but differ in their

reliability of identifying the context they are in will acquire a different set of norms.

The algorithm must be able to track these variations in natural learning and should

account for differences in normative beliefs between different agents.

For our experiment, we consider two agents (Agent 1 and Agent 2) that learn
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norms by observing actions in a library and a boardroom. For simplicity, we stipulate

that at any given moment an agent can either be in the general library context or in

a boardroom context. Also, we stipulate that the agents are moving from the general

library area into a boardroom. Thus, they first observe actions in a library and then

actions in a boardroom. However, the agents differ in their ability to accurately

detect the context they are in.

Agent 1 has a reliable context detector and can, with complete certainty,

identify its current context. Agent 2 has a more unreliable context detector, at least

at the threshold between the general library area and a boardroom. Thus, Agent 2

is initially certain that it is in the library, but as it moves toward the boardroom

it becomes uncertain about what context it occupies. Once it is completely in the

boardroom it is again certain of its context.

We expect that the learning algorithm can capture not only the context de-

pendency of the norms but also the agents’ different normative beliefs (as a result

of their different context detection abilities). We further expect that an agent that

is more unsure of its context is also less certain about the applicability (truth or

falsity) of a given norm. Moreover, we expect that because the agent is unsure of

its context at the library-boardroom threshold, it will attribute observations during

this time to both contexts (albeit to different degrees), thereby generally acquiring

more data instances for norms in each context. This would then have the effect of

strengthening the agent’s belief in the norm that it learns, allowing for a narrowing

of the uncertainty interval.

Figure 1 illustrates the success of the learning algorithm in both capturing the

context sensitivity of norms and the differential effect of learning norms in different

situations. We display four plots each showing single runs of the algorithm for

whether the action of “talking” is permissible. The results show a wider uncertainty

interval at first, but narrowing with accumulated data instances, which is consistent

with a hypothetical agent roaming the library and then entering a boardroom. We

also performed these single runs for the remaining 5 actions over both contexts for

both agents. The results at the end of these runs are shown in Table 6.4. Again,
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the uncertainty intervals [α, β] represent the degree of support for the rule in the

observations (α) and the total belief that does not contradict the rule (β).

As predicted, Agent 1’s learning of the library norm (Figure 6.3, top left)

proceeds by converging to an optimal estimate of the community’s norm endorse-

ment but then holds steady once the agent has left the library context and enters the

boardroom context. Conversely, this agent’s learning of the boardroom norm (bot-

tom left) begins to converge only once the agent has entered the boardroom. The

algorithm approaches the descriptive statistics from the experimental data (which

it was not given) but maintains a level of uncertainty that reflects the imperfect

agreement in the human data.

In the case of Agent 2 learning the library norm (top right), because it is

uncertain about the context in the middle of the run (positive sloping part of the

red-dotted line), the agent continues to adapt its learning, finally settling on an

interval towards the end of the run, which is a later convergence than that of Agent

1. Conversely, the agent’s learning of the boardroom norm (bottom right) begins

converging earlier than Agent 1. The result of the uncertainty in context is at the

end of the run, where Agent 2 settles on an uncertainty interval that does not include

the descriptive mean in the data. As predicted, this deviation suggests that Agent

2’s learning at the library-boardroom threshold was influenced by both contexts,

thereby increasing both the truth of the norm in the library and the falsity of the

norm in the boardroom. Moreover, because threshold data is used in both contexts,

the number of data points considered are increased, providing a tighter interval.

Agents equipped with the proposed learning methodology can not only dy-

namically learn from observations in evolving environments but can begin addressing

mutual differences in their background knowledge and sensory capabilities. For ex-

ample, an agent (such as Agent 2) can compare its learned uncertainty interval with

human consensus statistics; that way it can either correct its beliefs or refine its

context detection accuracy by attending to aspects of the environment it previously

overlooked. Agents can also directly compare and contrast uncertainty intervals.

For example, agents can agree if their confidence intervals overlap, or if the center of
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their intervals are close to each other. That said, being able to perform this sort of

introspection would additionally require the agents to be aware of their differences,

a challenge that is beyond the scope of this chapter but the subject of future work.

6.7 Conclusion

In this chapter, we presented a formal representation of norms using first-order logic

and Dempster-Shafer theory. The representation captures the context specificity of

norms that our experimental data suggest are strongly present in humans. Using

a data representation format that incorporates several properties of human norm

representation and learning, we then developed a novel algorithm for automatically

learning context-sensitive norms from the human data. Because the data format is

highly generalizable, norms could be learned from different types of evidence sources

in different contexts, and explicitly captures uncertainty due to variations in the

source’s reliability and the quality of the evidence. Moreover, we presented how

disparate artificial agents can learn norms in the presence of varying degrees of con-

textual uncertainty. The proposed representation and learning techniques provide a

promising platform for studying, computationally, a wide array of cognitive proper-

ties of norms.
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Figure 6.2: Single run of learning across two contexts. The narrowing shaded regions
indicate converging uncertainty intervals as new data instances are processed. Filled
circles represent the descriptive statistics from the experimental data, indicating ac-
tual norm endorsement averages among participants—the proportion of participants
who answered yes to the question: “Is this action allowed here?" The algorithm dis-
plays convergence towards the descriptive statistics (which it was not given), while
maintaining a level of uncertainty reflecting the imperfect agreement within the data.
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Figure 6.3: Single runs of two Agents moving from a general library context towards
a boardroom context. The red-dotted line shows the agent’s certainty about its
context as it moves. The narrowing shaded regions indicate converging uncertainty
intervals as new data instances are processed. Colored dots represent the mean
norm endorsements by experimental participants —the proportion of participants
who answered yes to the question: “Is this action permitted here?” The algorithm
displays flexibility in learning normative rules from observation for various agents
with different detection capabilities.
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Table 6.4: Uncertainty Intervals for Agents 1 and 2.

Norm Consensus Agent 1 Agent 2

P[α,β]
Lib reading 1.0 [0.63, 1.0] [0.75, 0.97]

P[α,β]
Board reading 0.93 [0.59, 0.95] [0.73, 0.95]

P[α,β]
Lib listening 0.96 [0.61, 0.98] [0.77, 0.99]

P[α,β]
Board listening 1.0 [0.63, 1.0] [0.76, 0.99]

P[α,β]
Lib talking 0.42 [0.27, 0.64] [0.57, 0.78]

P[α,β]
Board talking 1.0 [0.62, 1.0] [0.69, 0.91]

P[α,β]
Lib walking 0.91 [0.57, 0.94] [0.45, 0.67]

P[α,β]
Board walking 0.32 [0.21, 0.57] [0.33, 0.55]

P[α,β]
Lib usingComputers 0.95 [0.60, 0.96] [0.36, 0.98]

P[α,β]
Board usingComputers - [0, 1] [0.13, 0.99]

P[α,β]
Lib drinking - [0, 1] [0.29, 0.89]

P[α,β]
Board drinking 0.72 [0.44, 0.81] [0.44, 0.81]
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Chapter 7

Scaling up Norms

In the previous chapter, we discussed how norms can be represented and how agents

can learn these norms by observing norm-compliant behavior in the presence of

uncertainty. In this chapter, we redefine the formalism and introduce algorithms for

learning norms at scale. While retaining the essence of what it means to represent a

context-sensitive norm, this chapter dives deeper into the computational aspects of

norm learning.

7.1 Introduction

A norm is an instruction to perform (or not perform) a behavior. It has two condi-

tions: (i) it is followed by a sufficient number of individuals in a community (preva-

lence condition) and (ii) it is one that these individuals expect and demand each

other to follow (demand condition or expectation) [Bic06, BdCPD+13, MSA17b].

Norms play a central role in maintaining social order and facilitating coordination

and cooperation, without which no human community can exist. As artificial agents

become increasingly immersed into human societies, it is crucial that they acquire

our existing human norms.

Norms, however, are dynamic and change over time as populations and ex-

pectations change, with old norms disappearing and new ones emerging. So, agents

cannot be preprogrammed with any particular set of norms prior to entering the
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society. Instead, they will need to learn them automatically.

Automated norm acquisition is an active area of research spanning decades

and tackling different interrelated questions. One line of questioning asks how norms

come about as the population evolves (norm emergence) and is interested in the

evolution of cooperative behavior - what sorts of behavioral choices and interac-

tions lead to social norms? [ST95, SA07, AH81] A second line of questioning asks

how extant norms can be learned (norm learning/identification) by a new agent?

[ACC+07, OM13, CMOS16]. In this chapter, we focus on this second line of ques-

tions with a goal towards designing artificial agents capable of learning existing and

established human norms and customs through observation and interaction.

Computational approaches to learning norms include learning normative value

functions based on observing other agents’ behaviors in an Inverse Reinforcement

Learning setting [RDT15], exploring the space of behaviors and deriving an optimal

policy using Reinforcement Learning [AML16, KAS18], and inferring norms based on

others’ plans and goals [OM13, CMOS16]. To infer that a certain observed behavior

performed by some agent is a norm (i.e., an obligation or prohibition) requires the

learner to consider the possibility that observed agent was non-compliant, that the

observation itself was ambiguous or unreliable, or that despite its prevalence, soci-

ety might not demand it. For example, a behavior might be deemed to be optimal

by a large majority of the population and therefore performed by most. This does

not mean that it is obligatory, and non-performance of such a behavior, while sub-

optimal, might not be penalized. Current approaches do not consider these various

factors, which we consider to be crucial to norm learning.

In this chapter, we propose an approach based on Dempster-Shafer theory

that tracks the agent’s uncertain normative beliefs about observed behaviors over

time. DS theory allows for more naturally modeling incomplete, ambiguous, and

unreliable data. We make three contributions: (1) a DS-Theoretic frame represen-

tation for normative behaviors (Section 7.2) with a set of algorithms (Section 7.3)

operating on this representation for extracting both the prevalence condition and

demand condition associated with norms, (2) experimental results in an agent-based
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simulation environment to establish performance and computational complexity of

the proposed model (Sections 7.4.2 and 7.4.3), and (3) experimental results showing

that the DS-Theoretic agent can learn norms more effectively than a Bayesian agent

when agents are making observations at large distances or in crowded spaces (Sec-

tions 7.4.4 and 7.4.5), situations fraught with perceptual ambiguity and unreliability.

7.2 Representing Norms with DS-Theory

Norms are generally considered to be prevalent expectations of behavior [Hab15].

They can be thought of as a prescribed guide for behavior that is generally complied

with by members of a society [Mar77]. Norms concerning a specific behavior exist

when the socially defined right to control the action is held not by the actor but by

others [CC94]. These definitions collectively point to the idea that instructions –

prescriptions and prohibitions (i.e norms) – become associated with behaviors when

(i) a sufficient number of individuals in the society follow the instructions, and (ii)

there is an expectation or demand placed by others for following the instructions

[MSA17a].

There is no general agreement amongst researchers, however, about the most

suitable representation format for norms. The choices vary widely from explicit

logics [ACC+07, MLSRA+14, CMOS16, SSA+17, MSA17b] to implicit policies or

reward functions within a state-transition system [ST95, SA07, BAS15, YLS+16].

We build on the choice of explicit norm representations suggested in Chapter 6,

that closely tracks human norm representations. Explicit representations allow an

agent to separate learning from decision-making. Therefore, agents can choose to

comply or not with a norm when they need to act, allowing for an increased level

of autonomy. In Chapter 6, I showed that norms associated with behaviors are

activated in contexts, and not one but multiple behaviors (that can co-occur) might

be applicable in a context.

In building a formalism for a norm, we must therefore consider these above

findings: that it is associated with a physical behavior, which in turn is linked to a
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context as well as the prevalence of the physical behavior in a society and whether or

not the society expects the physical behavior to be performed, namely the demand

placed on it. For example, in the context of greeting someone, there may be several

physical behaviors available to the agent like smiling and waving. Whether or not

the act of smiling is associated with a norm is then a deontic determination (e.g.,

obligatory, forbidden, optional) of the particular physical behavior of smiling in the

context of greeting, which in turn is based on the extent to which smiling while

greeting is present in a society and whether the society expects its citizens to smile,

for example by sanctioning those who do not smile. Here, we propose that the agent

is uncertain about the extent to which smiling is prevalent and the extent to which

it is demanded by the society. The agent must observe and update its beliefs about

the prevalence and demand associated with smiling, and thereby its belief about

whether a norm is associated with the physical behavior of smiling in the context of

greeting. A deontic determination of the physical behavior’s normative status can

only be made once the agent is reasonably confident that its prevalence and demand

are above certain thresholds.

More formally, consider a language L, in which we have all the standard

symbols (variables, predicates, functions) and logical connectives of first-order logic.

Consider an agent that can perform several physical behaviors (ψ). But not all

behaviors are applicable in all contexts. So, we can say that a context C contains

a set of physical behaviors {ψ1, ψ2, . . .}. For a particular physical behavior ψ in a

particular context C, we can define a normative behavior as follows:

Definition (Normative Behavior).Let the tuple B = (ψ,C,P,D) represent a nor-

mative behavior, where C and ψ are ground atomic formulas in L representing

context condition (C), and the physical behavior (ψ) possible in that context.1 P

is the prevalence condition which we represent as an uncertainty interval [α, β]

capturing the epistemic uncertainty that ψ occurs in context C, where α rep-
1In Chapter 6, I represented behaviors as logical implication rules. The current representation

is intended to be more general, without carrying over the cumbersome and controversial formal
semantics of logical implications.
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resents the belief and β represents the plausibility as defined under DS-theory.

D = {true, false, unknown} represents the demand condition, which we consider

here to be either verifiable via observation (true or false) or unknown/unmeasur-

able. As we will see later in this chapter, one way to operationalize the demand

condition is by observing sanctioning of a physical behavior. In such cases, either

the agent can verify the occurrence or lack thereof of sanctioning after a behavior

has been performed, or the agent cannot verify the occurrence of sanctioning.

We can now define a norm as mapping between the normative behavior –

including the underlying physical behavior, the associated context, the prevalence

of the physical behavior in the context in society, and the demands (if any) that

have been placed on the physical behavior in the context in society – and a deontic

determination of the behavior’s normative status. That is the mapping answers the

question of whether a certain physical behavior like smiling has achieved appropriate

levels of prevalence and demand in the context of greeting for a norm of, say it being

obligatory.

Definition (Norm). A norm N is a mapping from a normative behavior B to a

normative (i.e.,deontic) status {F, O, unknown}, defined as

N =


F B = (ψ,C,P = [α→ 0, β → 0],D = true)

O B = (ψ,C,P = [α→ 1, β → 1],D = true)

unknown otherwise

(7.1)

Per this definition, if the demand condition has been met, and the prevalence

nears an uncertainty interval of [0, 0], then the norm returns a value of forbidden F.

For example, if physical behavior rarely occurs in society and for those cases where

it occured, it was sanctioned, then the normative behavior is likely prohibited. If the

demand condition has been met, and the prevalence nears an uncertainty interval of

[1, 1], then the norm returns a value of obligatory O. For example, if the physical

behavior occurs frequently and for those cases it did not occur, it was sanctioned,

then the normative behavior is likely obligatory. The norm cannot determine a
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deontic value for a normative behavior if the demand condition cannot be met,

and the agent can take that to mean the underlying physical behavior is optional.

That is, while high prevalence or low prevalence might suggest the possibility of a

norm, the agent cannot be sure that the society actually demands its citizens to

perform that behavior. For example, walking on the left on a sidewalk might be

what everyone does, but it is not an obligatory norm unless the members of the

society place demands on others to comply.

Here, threshold levels for prevalence P are defined as limits (→) of the values

of α and β approaching 0 or 1. however, threshold values for α and β can easily be

specified more precisely as specific numeric values in the interval [0, 1].

We will next explain how an agent can infer if a behavior B is a norm N from

making several observations of ψ in context C.

7.2.1 Basic Notions in DS-Theory

DS-theory is a measure-theoretic mathematical framework that allows for combining

pieces of uncertain evidential information to produce degrees of belief for the various

events of interest [Sha76]. In DS-theory a set of elementary events of interest is called

a Frame of Discernment (FoD). The FoD is a finite set of mutually exclusive events

Θ = {θ1, ..., θN}. The power set of Θ is denoted by 2Θ = {A : A ⊆ Θ}. Each set

A ⊆ Θ has a certain weight, or mass associated with it. A Basic Belief Assignment

(BBA) is a mapping (mass) mΘ(·) : 2Θ → [0, 1] such that
∑

A⊆ΘmΘ(A) = 1 and

mΘ(∅) = 0. The BBA measures the support assigned to the propositions A ⊆ Θ only.

The subsets of A with non-zero mass are referred to as focal elements and comprise

the set FΘ. The triple E = (Θ,FΘ,mΘ(·)) is called the Body of Evidence (BoE).

For ease of reading, we sometimes omit FΘ when referencing the BoE. Given a BoE

(Θ,FΘ,mΘ(·)), the belief for a set of hypotheses A is Bel(A) =
∑

B⊆AmΘ(B).

This belief function captures the total support that can be committed to A without

also committing it to the complement Ac of A. The plausibility of A is Pl(A) =

1 − Bel(Ac). Thus, Pl(A) corresponds to the total belief that does not contradict
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A. The uncertainty interval of A is [Bel(A), P l(A)]. In the limit case with no

uncertainty, we get Pl(A) = Bel(A) = P (A).

7.2.2 Relationship to Bayesian Theory

DS-theory is consistent with classical probability theoretic notions of interval proba-

bilities [FH91], and is often considered a generalization of Bayesian theory.2 It is the

framework of choice for the data fusion community. But, an uncertainty processing

framework must be selected based on the needs of the particular application [ST85].

Here, we justify our choice of DS-theory.

Consider the urn problem, in which an urn contains an unknown number

of red, yellow and blue balls. We want to predict the color of a ball that we pick

out. We learn about this urn by sampling (with replacement) one ball at a time and

updating our beliefs. Our beliefs can then provide a quantifiable basis for subsequent

predictions.

In a Bayesian framework, we model this example as a probability space Ω =

{r, y, b}, assign an initial uniform prior over measurable events, and then use Bayes’

rule to update it based on our observations. This handles the randomness aspect

of uncertainty. In DS-theory, we would establish an FoD Θ = {r, y, b} and update

masses based on observations and a generalized form of Bayesian conditioning per

[FH13], without assuming a uniform prior.

Now, what if we were blue-yellow color blind? We would not be able to distin-

guish between blue and yellow balls. This is the ambiguity aspect of uncertainty. In

a Bayesian framework, we could split the weight assignment between the two colors

evenly, but this is an additional distributional assumption, over and above assum-

ing a uniform prior, that might be unsupported. A DS-theoretic approach handles

this more naturally because, unlike Bayesian theory, it allows for set-valued random

variables. A mass can be assigned to the set {y, b} without needing to decide how

to split the measures.
2The close connection with Bayesian theory is one of the reasons we selected DS-Theory over

alternatives.
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Similarly, what if we used an unreliable sensor to determine the color? This is

the ignorance aspect of uncertainty. A sensor that predicts blue with 50% reliability

means that 50% of the time it predicts accurately, but the rest of time it could

be right or wrong. In a Bayesian framework there is no way to assign a weight of

0.5 to true ignorance (the entire probability space) without having to decide how

to spread the weights. A DS-theoretic approach handles this more naturally by

assigning m({blue}) = 0.5 and m(Θ) = 0.5.

To learn norms in the real world we need to account for occluded observations

(ambiguity) and variable sensor reliability (ignorance). A DS-theoretic approach

handles this more naturally than a Bayesian one; it is therefore our choice.

7.2.3 Bundling Behaviors into Contexts with Indexed FoDs

As noted earlier, each context C has an associated set of physical behaviors relevant

to it {ψ1, ψ2, . . .}3. When observing these physical behaviors in context, agents

often receive evidence for one or more of these physical behaviors together, as a set.

For instance, when an agent is collecting data by observing greetings, it may also

observe waving, smiling, talking etc. Together these physical behaviors may be the

only ones customarily relevant within the greeting context. We first need to reason

about the prevalence of these physical behaviors in the context of greeting. We do so

by reasoning about the uncertainty associated with the occurrence of these related

physical behaviors together within a DS-theoretic FoD Θ, indexed by context C,
3From Chapter 6, we know that normative behaviors are context-specific and are somehow

activated by characteristic features of a given context. The property of context sensitivity requires
that the agent recognize what context it is in and activate the context appropriate behaviors and
norms. It is currently unknown exactly how humans recognize contexts and how context activates
the relevant normative behaviors. One way is that the agent classifies the scene as being a particular
context, and then activates the normative behavior set that is relevant for that context. During
learning, however, the agent does not yet know the normative status of any of its behaviors. It
must start somewhere. The agent starts with a set of physical behaviors it can perform. For
each context, certain subsets of these physical behaviors might be relevant (in theory all physical
behaviors could be relevant for a context – while “greeting” you could, in theory, do a backflip). For
each context, a set of normative behaviors can be formed: each normative behavior corresponds to a
physical behavior in that particular context. A particular physical behavior could be associated with
multiple contexts and so it might be linked to multiple normative behaviors (one for each context).
Whether or not this normative behavior has a deontic determination is a different question, one
that is answered during the learning process by tracking prevalence and demand. Here, we do not
discuss this context-sensitivity as we are focusing on learning prevalence and demand, so we are
within a single context and we assume that all physical behaviors are relevant in this context.
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called an “indexed FoD.”

For example, in the context of greeting, the subset of applicable or rele-

vant physical behaviors might be {ψ1 = smile, ψ2 = wave}. We incorporate them

into an indexed FoD, Θgreeting comprising all possible combinations of the behavior

propositions (and negations) present in the selected subset of behaviors:

Θgreeting = {(smile, wave), (smile,¬wave), (¬smile, wave), (¬smile,¬wave)}

Modeling the FoD in this exhaustive way ensures that elementary events in

the frame are mutually exclusive of each other. Now, if we are interested in measuring

the amount of support in favor of, say behavior B2
4, based on our evidence that is cap-

tured in the frame Θgreeting, we would measureBel({(smile, wave), (¬smile, wave)})

as this captures the level of support for just wave irrespective of smile, from a body

of evidence that captures both.

More generally, a DS-theoretic elementary event θ, is a tuple of all the behav-

iors ψ (or their negations) present in the context. A set of elementary events forms

an indexed frame of discernment ΘC .

Definition (Indexed FoD). Consider an index I = {1, . . . , k}, k > 0, where k rep-

resents the number of behaviors ψ1, . . . , ψk in a given context C. Let a set G ∈ 2I .

We define an exhaustive elementary event as a k-tuple θG = (ψ̃G1 , . . . , ψ̃
G
k ), where,

for 1 ≤ p ≤ k:

ψ̃Gp =


ψp if p ∈ G

¬ψp if p /∈ G

An indexed FoD is a set of exhaustive elementary events

ΘC = {θG | ∀G ∈ 2I}
4B2 is the normative behavior corresponding to the physical behavior ψ2 = wave in context

C = greeting.
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Figure 7.1: Normative agent model. In each time step, new observations arriving at
the sensor are packaged as data BoEs, which can then be used to update underlying
cognitive BoE. Ambiguity in observation is recorded as ε and sensor reliability is
tracked with m(·).

7.3 Agent Model of a Norm Learner

We can construct an agent model comprising a set of cognitive BoEs each cognitive

BoE EC [t] = (ΘC ,FEC [t],mEC (·)[t]) defined over a corresponding indexed FoD ΘC .

A cognitive BoE represents that agent’s knowledge about the uncertainty associated

with a set of behaviors in a particular context. Initially, the observer is entirely

ignorant about the probability of occurrence of any behavior in a particular context.

Thus, the cognitive BoE is vacuous, i.e., FEC [t0] = ΘC and mEC (ΘC)[t0] = 1.0. The

observer will need to update this cognitive BoE based on evidence it receives from

observations it makes via its sensors. We model this learning and update process as

a sensor or data fusion problem. Intuitively, the observer’s sensors provide evidence

in the form of BoEs, which it can combine with its own cognitive BoE.

7.3.1 Model of Evidence Received

The agent model includes one or more sensors (Figure 7.1). Each sensor is capable

of producing a data BoE ED, which like the cognitive BoE is defined over an indexed

FoD, where each ED = (ΘC ,FED ,mED(·))5 is distinct and is not updated. Each

sensor i makes a set of k observations Oi = {oi,1, . . . , oi,k} as a form of truth assign-

ment where each oi,j ∈ {0, 1, ε} indicates whether the source determines, for a given
5We use ED and EC as subscripts to masses m(·) and focal sets F to clearly specify their

associated BoE.
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context C, whether a certain behavior ψj , 1 ≤ j ≤ k is observed (1), not observed

(0) or unknown (ε). For instance, an observation that a person in a greeting context

is smiling, but not waving can be represented as Oi = {1, 0}. We can combine the

observation Oi with other information about the source as well as a DS-theoretic

mass assignment to form a data BoE ED. Thus, for each set of observations, we

can generate a corresponding ED. For example, an observation O = {1, ε, 0, 0}

by a sensor with reliability 0.75 is translated into the DS-theoretic proposition

A = {{1, 0, 0, 0}, {1, 1, 0, 0}}. Then, a data BoE ED can be created with a focal set

FED = {A,ΘC} and a normalized mass function mED(A) = 0.75,mED(ΘC) = 0.25.

Thus, through the use ε and the mass function, we can capture both ambiguity from

say occlusion as well as unreliable sensors, respectively.

7.3.2 Learning Normative Prevalence [α, β] through Incremental

Update

We employ a conditional update strategy (CUE) that has upgraded Dempster’s

original rule of combination of evidence to accommodate the inertia of available

evidence and address some challenges with respect to conflicting evidence [PMZ+09].

In particular consider a given A ∈ FED . The updated mass (from iteration t to t+1)

mEC [t+ 1] : 2Θ → [0, 1] of an arbitrary proposition B ⊆ ΘC is:

mEC (B)[t+1] = µ[t] ·mEC (B)[t]+(1−µ[t])
∑

A∈FED

ν(A)[t] ·mED(B|A)[t], ∀B ⊆ Θ

(7.2)

where the CUE parameters {µ[·], ν(·)[·]} are non-negative real and satisfy

1 =
∑

A∈FED

ν(A)[t], ∀t, and 0 ≤ µ[t] ≤ 1 (7.3)

The conditional in the above equations are derived from Fagin-Halpern condi-

tionals which can be considered an extension of Bayesian conditional notions [FH13].

When m(B) = Bel(B), the conditional mass can be given by:
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mED(B|A) =
mED(B)

mED(B) + PlED(A \B)
(7.4)

Beliefs (α) and plausibilities (β) are determined from the Cognitive BoE

(EC). When operationalizing Equation 7.2 within the agent model, we only need to

consider and update those propositions B in the data BoE that are subsets of the

observed proposition A. This due to the following lemma, the proof for which can

be found in [KPD+04]:

Lemma 7.3.1 Given a BoE E = (Θ,F ,m(·)) and Bel(A) > 0, consider the condi-

tional BBA m(· | A) : 2Θ 7→ [0, 1]. Then m(B | A) = 0 whenever A ∩B 6= ∅.

Moreover, we only need to iterate through FEC and FED , and not necessarily

all the propositions in 2ΘC . This is because our data representation of observa-

tions O limits the sorts of propositions whose mass will ever be non-zero, extending

[KPD+04]. These features allow for significant reductions in the computational com-

plexity of the algorithm as will be shown in the experiments later in this chapter.

Algorithms 1 and 2 show how this can be accomplished.

Algorithm 7.1 Pseudo code for agent norm learning
1: C: current context
2: L: lifetime of learning
3: EC ← retrieveCognitiveBoE(C)
4: D ← ∅
5: while t < L do
6: actors ← chooseActorsToObserve(C)
7: behaviors, sanctions ← observe(actors)
8: ED ← createDataBoE(behaviors,sanctions)
9: EC ← update(EC ,ED)
10: end while
11: for all behavior B ∈ EC do
12: bel ← getBelief(B)
13: pl ← getPlausibility(B)
14: D[B]← classify(bel,pl)
15: end for
16: return D
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Algorithm 7.2 Pseudo code for CUE-based update
1: EC : Cognitive BoE
2: ED: Data BoE
3: µ: CUE parameter representing the learning rate
4: for all propositions B ∈ FED do
5: sum← 0
6: for all propositions A ∈ FED do
7: if B ⊆ A then
8: m(B|A)← m(B)

m(B)+Pl(A\B)

9: else
10: m(B|A)← 0
11: end if
12: ν ← mED (A)
13: sum← sum+ (m(B|A) · ν)
14: end for
15: m← getCurrentMass(EC)
16: if B ∈ FEC then
17: prior ← µ ·m
18: else
19: prior ← 0
20: end if
21: mEC (B)← prior + (1− µ) · sum
22: end for
23: return EC

7.3.3 Learning Normative Demands D from Sanction Signals

Societal demands can be realized through norm enforcement strategies, such as sanc-

tioning. There are a multitude of different mechanisms with which sanctioning can

be accomplished including punishments to reduce an agent’s fitness or loss of utility

or setback in progress towards goal, or even reputation harms and blacklisting, and

restricting access to future rewards. Sanctions can also be positive such as reward

mechanisms for norm compliance.

Regardless of the mechanism, the goal of sanctioning is to influence the agent’s

belief about the normativity of a behavior and thereby impact its decision-making

with respect to that behavior. We consider those sanction signals (special enforce-

ment actions) that aim to notify the offender that a certain behavior was non-

compliant. These sanctions can occur in several different ways. First, the agent is

directly sanctioned by another after behavior. Second, the agent observes another

agent, and also observes that agent receiving sanctioning. Third, the agent sim-

ply observes a behavior and then infers that sanctioning should occur (although it
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does not) for non-compliance based on noticing that the behavior was sub-optimal

and unlikely to have been chosen by a rational agent had there not been a norm

associated with the behavior.

We view each of these three sanctioning processes to be learning experiences

for the agent in which the agent follows a general strategy of modifying a behavioral

observation captured in the data BoE ED associated with the particular behavior.

The agent also tracks a value for D, setting it to true if it observes or infers sanc-

tioning, setting it to false if it observes conflicting sanctions and leaving it unknown

if there is no sanctioning. For the first type of sanctioning (direct), if the agent

experiences, first hand, a sanctioning for a behavior, it produces a new data BoE

in which the particular observation oi,j corresponding to the sanctioned behavior is

modified to change its value from 1 → 0 if a forbidden behavior was performed, or

from 0→ 1 if an obligatory behavior was not performed6. The mass function for the

collective observation is set to 1.0. For the second type of sanctioning (indirect), the

agent modifies the data BoE associated with behavior being observed by changing

the value of the observation oi,j as before, but also modifying the mass function

based on the strength of the reliability of the reading (for example, depending on

how far the agent is from the observed behavior). Finally, the third type of sanc-

tioning (inferred) also modifies the data BoE, however, it changes the observation

to ε7, thereby weakening the strength of the sanction signal. Moreover, here too the

mass function is modified to capture some of the nuances of reliability.

7.4 Experimental Results

There is no single universally agreed-upon experimental paradigm or baseline for

norm learning in multi-agent systems as any given experimental setup is dependent

on the choice of the underlying norm representation, which as we have noted varies

widely. Evaluating an approach that learns a Linear Temporal Logic (LTL) norm8

6We assume an agent that is not devious or deceitful.
7Recall from Section 7.3.1 that ε is assigned when it is unknown if a certain behavior is observed.
8An example of an LTL norm might be: “in some present or future time step the agent must

perform a particular behavior.”
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will necessitate the use of state-transition systems, whereas one for a representation

such as ours need not do so. Our central claim in this chapter is that the proposed

approach can be a useful and feasible way to model different forms of uncertainty

during norm learning. We support this claim through a series of agent-based simu-

lations in which we study the dynamics of the belief update process, performance,

computational complexity, and the significance of imperfect data.

7.4.1 Simulation Setup

We considered an agent-based model (ABM) simulation environment. The environ-

ment consisted of several agents that could observe and act in the environment. We

modulated several parameters for each of the experiments and these are shown in

Table 7.1. We assumed that at the start of the simulation, the norm system (fixed #

norms) had reached some stable normative state in the society and certain behav-

iors had been assigned with a normative status – Forbidden, Obligatory, or Optional,

which we assigned randomly. Certain actors (not the norm learners) were aware of

the normative status of the behaviors and their choice of performing a particular

behavior during a simulation cycle was governed by the normative status of that be-

havior and the actor’s own compliance rate. In addition, these agents could sanction

each other if they observed non-compliant behavior, governed by their sanction rate.

7.4.2 Experiment 1: Dynamics of Belief Update

We first study how beliefs and plausibilities change over the course of a simulation

run. Figure 7.2 shows convergence plots for these uncertainty intervals through the

simulation under different experimental conditions – compliance, sanction rate and

ambiguity. For each of the runs, we considered three behaviors and assigned them a

different normative status of forbidden, optional or obligatory.

Where the sanctioning rate is low and compliance rates are high for certain

behaviors, a learner might find it difficult to confirm if the behavior is actually a

norm. These are instances where the learner might benefit from explicit instruction

of normative status, or by inferring a norm is present if the behavior was sub-optimal.
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Figure 7.2: Plots showing the ability of the proposed approach to distinguish between
qualitatively and quantitatively different types of uncertainty over three types of
norms (obligatory, forbidden and optional). We assume complete ignorance at the
start ([0, 1]). Top left: With low uncertainty, intervals converge to tight bounds
according to deontic statuses of three norms, Top right: By lowering the sanctioning
rate, intervals move closer to each other (removed optional norm for clarity), Bottom
left: By lowering compliance as well intervals overlap and all actions appear optional,
Bottom-right: Increasing observational ambiguity widens the interval

In Figure 7.2, the uncertainty that each of the three behaviors occurred is

given by the shaded regions. In this case of high compliance, sanction rate and low

ambiguity (top left), the uncertainty converges to tight intervals as more observations

are made and aligns closely with the pre-established deontic statuses of the three

behaviors. For example, the belief and plausibility for the obligatory behavior con-

verged from [0, 1] to much narrower interval of [0.79, 1]. The agent was additionally

able to declare this behavior as a norm if sanctioning was also observed.

By lowering the sanctioning rate (top right), we observe that while their

widths remain largely unchanged, both intervals have moved closer to each other.

Fewer noncompliant behaviors were corrected, so obligatory behaviors that were not

seen, lowered their beliefs and forbidden behaviors that were seen, raised their beliefs.

Moreover, the non-corrected data instance still served as evidence and therefore
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affected the plausibility in a similar manner. Because the compliance rates were still

quite high, we saw a correct classification despite the fact that the intervals drifted

towards the center.

The bottom-left plot shows what happens when the compliance rate drops.

The intervals have come together near the center and the observer will not be able

to properly classify behaviors as being obligatory or forbidden. In this situation

where there many noncompliant actors and reduced norm enforcement due to lower

sanctioning rate, essentially all three behaviors appear optional.

If there is ambiguity in the observation (bottom-right), then the intervals will

tend to widen, which is consistent with DS-theoretic updates with set-valued random

variables, that cannot be directly modeled in Bayesian approaches. Crucially, the

widening of the interval suggests a qualitatively and quantitatively different form of

uncertainty as that seen in the cases of sanctioning and compliance.

7.4.3 Experiment 2: Performance and Computational Complexity

Performance. We next study the performance of the norm learning as measured

by precision and recall of the normative statuses of the behaviors. We performed a

larger scale simulation in which we varied lifetimes – 25, 50, 100 and 500, compliance

rates (low/high), sanction rates (low/high), ambiguity rates (low/high), sensor reli-

ability rates (low/high) and number of norms – 3, 5, 7, 10, 12. We considered a 1000

random seeds allowing us a total of 320,000 separate runs of each simulation scenario.

We calculated the precision and recall for the multi-class classification problem of

deciding if a behavior was forbidden, obligatory or optional. Table 7.2 shows the

precision and recall for forbidden and obligatory behaviors for various states of un-

certainty. We have color coded the table into four quadrants. Our performance

exceeds the state of the art Bayesian approaches [CMOS16] (e.g., in those cases that

contain low compliance, ambiguity and sanctioning rates, we show average precision

and recall near 0.9, significantly higher than those reported earlier).

Table 7.2 shows the precision and recall for forbidden and obligatory be-

haviors for various states of uncertainty. We have color coded the table into four
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Number of Behaviors in Context

L
if
et
im

es

3 5 10 12

25 3.9 5.4 10.5 12.1
50 4.8 6.7 14.3 17.8
100 5.5 8.6 19.1 24.3
500 6.7 11.6 25.2 33.7

Table 7.3: Average size of focal set |FEC |. Although the |ΘC | grows exponentially
with the number of behaviors, |FEC | (over which our algorithm iterates) only grows
linearly with the number of behaviors and sub-linearly with the number of lifetimes
as the amount of incoming evidence increases.

quadrants. The red region (like bottom-left Figure 7.2) was where the sanctioning

and compliance rates were low. Generally, the classification accuracy is low in the

red region as the agent is unsure how to classify behavior in these “wild-west” sort

of settings, where all the actions appear optional. Performance in the yellow and

green regions were very similar because of the high sanctioning rate, which corrected

for any non-compliant behavior. Finally, the blue region corresponds to cases when

sanctioning rate was low, but compliance was high. Here, the newcomer observer

cannot discern the difference between a norm and a convention. The accuracy rates

are still quite high because compliance is high, so the newcomer observer is learning

the right norms from observation. However, it cannot discern if the convention it

observes is in fact an expected norm.

Computational Complexity. In general, DS-theoretic computations are expo-

nential in |Θ|, and for indexed FoDs they can be doubly exponential in the number

of behaviors. We can limit the update complexity in Algorithm 7.2 by only iterating

through the focal sets of the cognitive BoE FEC and the data BoE FED . FED is

never greater than two elements (one for the observation and other for ΘC), and we

show in Table 7.3 that FEC does not always grow exponentially. Table 7.3 represents

a highly compliant multi-agent system with high rates of sanctioning. If there is an

increased amount of conflicting evidence, we expect that |FEC | will increase. We can

monitor this rate of growth in FEC and potentially even terminate learning to seek

clarification. Generally, when there is substantially more unreliable and ambiguous
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data, the computational complexity can grow because the focal set must also keep

track of not just singletons but also propositions.

Second, we incorporated a recent recursive approach (called REGAP) to ac-

cess large FoDs [PPMS16]. However, REGAP requires the maintenance of a mass

vector that is of size 2|Θ|, which is untenable for our indexed FoD. We modified

REGAP to only represent non-zero masses in a hashtable, and adapted the corre-

sponding mass and belief access algorithms accordingly. Even with these complexity

reduction measures, the belief and plausibility computations in lines 12-13 of Al-

gorithm 7.1 can still be quite costly for large sets of behaviors [PPMS17]. We are

currently exploring ways to reduce the complexity of these operations, as described

in Section 7.5.

7.4.4 Experiment 3: Uncertainty due to Learner’s Distance from

Behavior

Unlike experiments 1 and 2, Experiments 3 and 4 were conducted in a two-dimensional

simulation, where the agents were allowed to explore a 2D environment. We were

able to factor in the role of distance and occlusions in this simulation environment.

In these experiments, we ask if an DS-based agent can learn norms faster than a

Bayesian agent. As noted earlier, DS-theory is a generalization of Bayesian the-

ory. We hypothesized that if the DS-agent can use any observation (whether or

not entirely reliable) it is more likely to recognize and converge to an interval com-

mensurate with a normative status. Specifically, we consider the following criteria:

prohibitions are behaviors whose DS-theoretic plausibility β < 0.25 and obligations

are behaviors whose DS-theoretic belief α > 0.75.9 Experiments 3 and 4 determine

how many learning cycles it would take for an agent to converge to an interval that

matches this criteria. We modeled a Bayesian agent in this setting as one capable

of handling a data BoE ED containing observation O, where oi,j = {1, 0}, oi,j 6= ε

and has a mass function m(·) = 1.0 and |FED | = 1. This model of a Bayesian agent

is justified as DS-Theory converges to Bayesian theory in the absence of ambiguity
9This is consistent with Definition 7.2.
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(ε) and unreliability (m(Θ) > 0). Even though this model of a Bayesian agent does

not capture more sophisticated models (hierarchical Dirichlet models), we chose this

naive model as it maps onto current state of the art norm learning approaches (e.g.,

those used by Cranefield et al.).

In Experiment 3, our independent variable, maximum reliable distance, is the

distance up to which the agent is guaranteed to make reliable (m = 1) measurements.

Beyond this distance and up to a maximum visible distance the DS-agent’s mass

function was modulated as a function of the inverse squared distance. The Bayesian

agent ignored those readings that were not reliable. The distance also impacted

the DS-agent’s recording of whether or not the observation was unkown. Thus,

although the DS-agent could conceivably view more of the environment, its reliability

in those readings as well as the reading itself were adversely impacted. The results

shown in Fig. 7.3 suggest that despite these adverse impacts, the DS-agent learned

significantly faster than the Bayesian-agent in a number of cases, a difference more

pronounced when the maximum reliable distance was decreased.

7.4.5 Experiment 4: Uncertainty due to Occlusions in the Learner’s

Line of Sight

Experiment 4 followed a similar structure to Experiment 3, with the difference that

the environment was made significantly more crowded and the maximum reliable

visibility was set to a fixed number. While the Bayesian agent ignored the occluded

observations entirely, the DS-agent modulated its mass function and observation

value based on the extent to which the observation was occluded (i.e., as a function

of the angle between the two agents). The results shown in Fig. 7.4 suggest that,

as in Experiment 3, here too the DS-agent learned faster than the Bayesian-agent in

the presence of obstacles.
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Figure 7.3: Box plot comparing a DS-based agent (blue) with a naive Bayesian-agent
(red) when observations are influenced by distance. The results suggest that the DS-
agent was significantly faster in learning norms (p < 0.001) when the agents were
relatively myopic (max reliable visibility < 30). The maximum reliable visibility is
the range within which the agents can make observations that are certain. Beyond
this range and below a maximum visble distance, the observations are increasingly
unreliable and ambiguous.

7.5 General Discussions

In this work, we presented a new approach for norm learning incorporating epistemic

uncertainty along with sanctioning during the learning process. The proposed ap-

proach provides an explicit representation of normative behavior that can be mapped

onto a deontic classification, which, in turn, can be used for norm-compliant decision-

making. Experiment 1 provided a close-up view of the dynamics of the norm-learning

process, and particularly the convergence behavior of the the agent’s uncertainty:

beginning with complete ignorance (represented as a [0, 1] interval) and gradually

converging as evidence is received. Crucially, the experiment showed that the ap-

proach can capture interval uncertainty at any point during the learning process. The

true beliefs are always within this interval, a property that is not true of Bayesian

confidence intervals. Moreover, the experiment showed how the presence of unreli-

able data, missing data, and sanctioning can cause the intervals to diverge or shift
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Figure 7.4: Box plot comparing a DS-based agent (blue) with a naive Bayesian-agent
(red) when observations are influenced by occlusions in the environment. The results
suggest that the DS-agent was significantly faster in learning norms (p < 0.01 for
25-75 obstacles, p < 0.001 for 100-150 obstacles) when there were obstacles.

in ways that provides insight into the nature of the observations made by the agent.

Experiment 2, a larger-scale parameter-sweep, showed how well the approach can

correctly classify extant norms and that the approach is computationally tractable,

even though traditional DS-theoretic computations are generally not. The approach

provides comparable results to existing norm-identification techniques under con-

ditions of uncertainty, while accounting for missing data and unreliable data. We

cannot perform direct empirical comparison with other approaches because of dif-

fering norm representations. But we can compare the performance of a DS-theoretic

approach against a Bayesian one, which we did with Experiments 3 and 4. Exper-

iments 3 and 4 demonstrated the value of not ignoring unreliable and ambiguous

data, but instead considering them in a principled way. Specifically, Experiment 3

showed that our approach performs significantly better than a traditional Bayesian

approach when agents must make observations at distances, producing unreliable

measurements. Experiment 4 showed that the proposed approach performs sig-

nificantly better than a traditional Bayesian approach when the agent must make
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observations in crowded environments, where occlusions can enter the agent’s line

of sight. Overall, the experiments suggest that the proposed DS-theoretic approach

combined with sanctioning is a promising direction for norm-learning research.

7.5.1 Importance of Sanctioning

Our results show that in normative systems where the sanctioning rate is low and

compliance rates are high for certain behaviors, a newcomer might be able to cor-

rectly perceive these regularities as conventions. However, without sanctioning it is

difficult to confirm if the behavior is actually a norm. These are instances where the

newcomer agent might benefit from explicit instruction of normative status. Learn-

ing norms from explicit instruction via, for example, natural language has been a

subject of recent research [WSW20, SOKS18].

We focus on a learning strategy that uses the sanction signals to correct sanc-

tioned observations prior to update. This form of sanctioning has the shortcoming

that strong sanctions obtained late in the learning process might not be given the

appropriate level of influence to overturn past knowledge. Fortunately, the proposed

approach allows for more sophisticated techniques of handling sanctioning like, for

example, using the ν parameter in Equation 7.2 to increase or decrease the amount

of weight assigned to a new observation or sanction signal, thereby allowing an agent

to unlearn bad behaviors quickly.

Sanctioning, while direct, is by no means the only way to confirm the norma-

tive status of a behavior. For example, consider inferring that a behavior is a norm

when it is not the lowest cost (or most optimal) option that an agent chooses in a

particular situation. The shortest path to ice cream may be to walk to the counter

of an ice cream truck in a straight line, but the normative one is to choose the higher

cost approach, at least from a distance standpoint, and walk towards the end of a

long winding line of fellow customers. An agent observing this behavior might be

able to infer indirectly the normative nature of this behavior without needing ex-

plicit sanctioning. Inferred sanctions are also particularly relevant when there are

no other sanction signals like, for example, in a highly compliant or lowly policed
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society. In these situations, it is beneficial if a society’s normative expectation or

demand can still be inferred from the optimality of the behavior. In ongoing work,

we are exploring these indirectly inferred forms of norm identification.

7.5.2 Assumptions about the Observations

One advantage of the proposed approach over many other approaches is that the

observer makes very few, if any, assumptions about the actors it observes. However,

it may be helpful to use some knowledge about the actors’ goals or plans in furthering

the norm identification process. Building on the notion of indirect norm recognition

discussed above, the additional assumptions and knowledge about the actors could

assist in establishing the norm status of behaviors in precisely those cases where

either sanction signals are unavailable or insufficient.

That said, a limitation of the current work is that the observer knows in

advance the set of behaviors applicable in a context. It is able to recognize that

certain relevant actions were not performed, or certain performed actions were irrel-

evant. Lifting this assumption will require the agent to be able to grow or shrink

its underlying indexed FoD. Modeling these capabilities under a Bayesian approach

would require maintaining a conditional probability table of all the actions in a con-

text. If actions are removed or if new actions are added, these tables have to be

recomputed, which is an expensive process. One of the most exciting aspects of the

proposed approach is the potential for expanding and growing the set of norms in real

time, without always having to recompute joint distributions, as would be needed

in the Bayesian approach. This is made possible by the notions of “coarsening” and

“refinement” provided in DS-theory [Sha76]. Moreover, our approach is strictly “in-

cremental”, i.e., we do not need to store the individual observations themselves as

we are extending the FoD with new data values; whereas in the Bayesian approach

this would be necessary otherwise the distribution cannot be recomputed.
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7.5.3 Managing Contexts

One challenge with the proposed approach is the inherent computational complexity

of computing various measures of belief and plausibility, especially as the number of

behaviors (or norms) increases. Although we propose some ways to address these

issues, the complexity of norm identification is still exponential in the number of

norms (i.e., set of behaviors within an indexed frame).

One way to circumvent these problems is to leverage a feature of human norm

representations, i.e., their context-sensitivity [SSA+17], and construct much smaller

indexed FoDs focused on behaviors for narrowly defined contexts. While we focused

on a single context setting in this chapter, the approach is already equipped to handle

multiple cognitive BoEs allowing an agent to partition its universe of behaviors into

smaller and narrower contextual settings. This means that within a given context,

we can keep the number of norms fairly small, while allowing the number of contexts

to grow as needed. Moreover, a given behavior can exist in several contexts, and

contexts themselves could be hierarchically related to other contexts. Sarathy et

al. have recently explored norm learning in multi-context settings [SSM17] and we

intend to extend the proposed framework as such.

7.5.4 Individual vs System-level Patterns

The bundling of behaviors into contexts also suggests another form of bundling

where the observer can aggregate observations with respect to specific actors. In this

chapter, the observations are all used to update a single cognitive BoE. However, in

some circumstances, it may be helpful to explore the normative status of behaviors

at both the agent level and at the society level. Here, cognitive BoEs can be indexed

not just by context, but even by the ID of an observed agent. The observer can then

track both individual-level behavioral regularities as well as system-level ones. This

can help answer questions about whether certain behaviors appear to be conventions

or even norms because they are complied with by a small but active group of actors.

We can also use these individual differences to explore deviant actors (norms violated
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by few) and anomalous norms (behaviors followed by a few, but ardently), where

in each case there are significant differences between the statistical regularity of a

behavior at the individual level versus that at the system level.

In addition to being able to determine uncertainties associated with specific

behaviors, the agent can, with its existing cognitive BoE, answer several additional

questions such as whether two behaviors are allowed together? What happens if I

perform one of two behaviors and not both? The agent may have never observed

these behavioral combinations directly, but it might still have evidentiary support

for them indirectly, which is readily accessibly in the cognitive BoE. That said, our

representation is largely propositional, thus it has a limited degree of expressivity.

This however, does not stop the agent from generalizing and inducing first order

atoms from this propositional knowledge. For example, if whispering (which is a

specific form talking) is not allowed, then it is likely that talking, generally, is likely

not allowed.

7.5.5 Expressivity of Norms

When agents perform actions in the real world, their actions are typically goal-

directed, plan-based and change the environment for others. These changed envi-

ronments, in turn, influence the agent’s own decision-making. Our experiments do

not show the performance of the proposed approach in these more expressive settings.

Past work by Cranefield et al. [CMOS16] and Oren et al. [OM13] demonstrate the

strength of plan recognition and representing norms in a more expressive language

like LTL to capture these more embodied agents. The focus of our chapter, however,

has been along the dimension of improving the quality of uncertainty representations

over prior work. In future work, we intend to integrate plan-based approaches with

the proposed richer uncertainty model.
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7.6 Related Work

Research on normative multi-agent systems (nMAS) is several decades old and ex-

tensive [SC11, BdCPD+13]. Since norms play a central role in maintaining social

order and facilitating coordination and cooperation, researchers have attempted to

formalize and computationalize mechanisms by which norms are formed, propagated

and spread through a normative society [SCPP13]. In this chapter, we have focused

on norm-formation, and specifically the problem of how individual agents can learn,

identify, or recognize norms that have already been created in a society, based on

observations and interactions [CMOS16, SCPP13].10 This problem is a particularly

important problem once one realizes that it is not enough to simply communicate a

set of norms to a new agent prior to entering the society. This is because in dynamic

nMAS, agents can enter and leave at any time, norms are constantly changing and

evolving, and current agents may not know if the norms they believe to exist, apply

throughout the society [HRCS16].

Roughly following the taxonomy proposed by Savarimuthu et al. [SCPP13],

there have been two primary past approaches to the norm-identification problem.

One approach involves implicitly learning a norm through a series of interactions

with current agents in the society using game theoretic and reinforcement learning

techniques. Bottom-up learning techniques of this sort were introduced in seminal

norm-emergence work by Shoham and Tennenholtz [ST95], subsequently by Sen

and Airaui [SA07], and more recently, in work by Beheshti et al. [BAS15] and

Yu et al. [YLS+16]. These methods are largely utility maximizing methods, and

norms are only represented implicitly (e.g., reward function), so there is no notion

of norm expectation. Any strategy that maximizes utility is considered a norm, and

agents designed in this approach are not entirely autonomous as there is generally

no mechanism by which they can violate norms.

The other class of approaches (including the proposed approach) have focused

on modeling norms as cognitive concepts in the agent’s mind. These approaches
10Note that norm-identification is distinct from the norm-emergence problems of how agents in

a society collectively can create norms, or how much do these emerged norms spread.
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posit mechanisms that allow agents to recognize, represent, examine, deliberate, and

communicate norms, an ability not readily facilitated by the implicit approaches.

Andrighetto et al., developed a computational architecture to model norm emer-

gence and identification which allowed for explicit norm representation and learning

norms from messages that have been communicated to the agent or those that the

agent might have observed [ACC+07, ACCC10, OM13, CACC09]. Andrighetto et

al. (2010) and Campenni et al. (2009) allowed for explicit norm representation and

learning norms from communication and observation. However, they did not infer

obligations, but merely permissions due to the behavioral regularity. Moreover, none

of these approaches account for epistemic uncertainty and sanctioning.

There have since been more sophisticated norm representations and for-

malisms including logical structures afforded by first-order logic, deontic logic, and

temporal logics (CTL and LTL) [CANB13, HRCS16, RDF15]. In some approaches,

the language of norms is baked into the agent behavior itself where the logical lan-

guage maps to state-action pairings, allowing for hybrid approach combining this

cognitive approach with a reinforcement learning approach [HRCS16].

Certain approaches suggest that norm representations include precondition,

action and some deontic operator [MLSRA+14]. Along these lines, some approaches

have looked to incorporate plan recognition into nMAS.Work by Oren and Meneguzzi

(2014) [OM13], and subsequently by Cranefield et al. (2016) [CMOS16] and Krzisch

et al. (2017) [KM17] in Bayesian norm identification have shown success in mod-

eling norm identification and been able to use Bayesian updates to learn norm-

compliant behavior from relatively few observations. Oren and Meneguzzi (2013)

[OM13] proposed a plan recognition based mechanism, in which their system ob-

serves what states the agents always avoid or always achieve. However, this approach

assumes that the observed agents’ plan libraries are known. Moreover, employing

a Bayesian update mechanism requires making assumptions about the prior distri-

bution of norms, which may be unjustified.11 Cranefield et al. (2016) [CMOS16]
11Norm priors need not be uniformly distributed, since they are not derived from a random

process.
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handled uncertainty in relation to the probability of violation or noncompliance.

They use Bayesian updates to learn norm-compliant behavior from relatively few

observations. As noted earlier, Bayesian approaches are inherently limited when

handling unreliable and ambiguous data.

Work by Sarathy et. al (2017) [SSA+17] (reproduced in previous chapters),

Arnold et al., (2016) [AKS17] and Malle et al. (2017, 2019) [MSA17b, MBS19],

have suggested that a richer normative system may be needed to account for recent

discoveries about human norm representation, activation and learning. In partic-

ular, I proposed (in Chapter 6) a computational model that accounts for context

and uncertainty. In this chapter, we extended this nascent model by accounting

for sanctioning and variable agent compliance in a multi-agent setting. Moreover,

we introduce algorithms that significantly improve performance and scalability by

reducing complexity for larger sets of behaviors and longer lifetimes.

7.7 Conclusion

Prescriptions and prohibitions (i.e., norms) become associated with behaviors when

there is general consensus in society and there is an expectation among members

that the norm be complied with. In this chapter, we provide a novel computational

approach for an artificial agent to observe behavior and recognize norms associated

with these behaviors under uncertainty. The approach accounts for real-world un-

certainty where observations are made at different distances, in crowded spaces and

where there is variability in consensus and expectations associated with the norma-

tive status of behaviors. We show through a series of experiments that the model and

approach is state-of-the-art, tractable and provides some insights into how observa-

tions can be made in imperfect environments. Doing so, we provide those interested

in designing norm-compliant agents with a blueprint for how they might factor in a

richer notion of uncertainty when learning norms from observation.
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Chapter 8

Consent

Turning our attention away from the cognitive and mathematical aspects of norm

representation and learning, in this chapter we focus on recognizing the importance

and pervasive nature of one particular type of social norm – consent. “Consent” and

its social role in regulating human behavior has been studied heavily in the legal

literature. This chapter attempts to make a connection between the centuries-old

legal precedent with human-robot interaction, focusing specifically on the types of

considerations AI system designers need to account for when building interactive

systems.

8.1 Introduction

Social robots are designed to engage people in an interpersonal manner, often as part-

ners, in order to achieve positive outcomes in domains such as education, therapy,

and healthcare. Their sociality also aids task-related goals in areas such as coordi-

nated teamwork for manufacturing, search and rescue, domestic chores, and more

[BDK16]. HRI research has made tremendous strides in exploring and discovering

the social competencies that allow for an “efficient, enjoyable, natural and mean-

ingful relationship” [BDK16]. Understanding what sorts of conduct and behavioral

choices enhance or detract from positive social interactions is crucial.

In pursuit of this understanding, HRI research has organized itself along
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several lines. There are topics represented as types of interactions (e.g., touch

based, long-term), and there are HRI subfields mapped as general aspects of in-

teractions: proxemics [MM17, MM11]; approach [WDWK07]; eye-gaze and joint

attention [AS17a]; interruption [THC+16]; touch [VET13, AS18a]; level of polite-

ness [BS16a, BC17, POYI18]. Technical approaches to equipping robotic systems to

interact along such lines has generally involved computationalizing an existing social

or anthropological theory of interaction applied to the aspect being studied. HRI’s

empirical research helps evaluate how robots so-equipped interact in experimental

settings.

Even as the field has pushed itself to more robust kinds of interactions and

more sophisticated systems of planning, the prevalent notion of “social interaction”

still focuses largely on dyadic exchanges. These one-on-one engagements usually

rely on fairly direct cues and straightforward measurements of user preferences. For

example, in approach research, it has been found that people generally prefer robots

to approach them from the front and do not prefer robots to approach them from the

back [WDWK07]. But there is a major “elephant in the room” in such findings, and in

this chapter we propose that it deserves distinct recognition as a way to organize HRI

research: the notion of consent. Our argument is that HRI’s progress in investigating

interactive dynamics will not be generalizable enough without tackling the issue of

consent head-on.

Consider “approach” again. There are instances when an approach from be-

hind is acceptable and maybe even preferred, for example if a robot was pushing a

person out of harm’s way from an oncoming car. Wouldn’t the human have con-

sented to this act if asked and provided time? Should the robot presume consent?

At first glance, it seems that that sort of reasoning is highly circumstantial and

potentially too ungainly to be a cogent research problem. Like other subtleties of

interaction, it could be chalked up as “context” and tackled at a future date when

technology has evolved further. We argue here instead that the tools already exist

to directly explore the question further and that understanding consent is central to

HRI’s future research.
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The word “consent” typically brings to mind either notions of legality around

highly deviant sexual behavior or around the appropriateness of information given

to a patient about a medical procedure. However, consent’s rich nuances and in-

tricacies permeate our daily interactions in even normatively neutral environments.

For example, when should a robot waiter take your plate at a restaurant? Consent

can not only influence a robot’s behavioral choice, but also the normative valence of

a situation. Consent can turn a normatively neutral situation into a charged one,

and vice versa. While consent is one factor in the larger normative fabric of society,

it is its normative power and pervasiveness that provides the motivation for HRI

researchers to take it seriously.

More generally, social interactions among humans in societies are based on

social and moral norms[AS17c]. These norms are deeply ingrained in us and we

expect others to abide by them. Now, failing to abide by these norms causes social

reactions in humans, from blaming and reprimanding to potentially harsher legal

consequences [Sch17]. Given that we have a propensity to anthromorphize robots,

especially human-like ones, we are likely to extend these expectations to robots and

perceive them as moral agents as well [MS15]. Consent is a key component of this

normative setting, continually influencing our expectations of one another. So, it

may be natural to expect that ethical competence in robots cannot be achieved

without a careful consideration of consent.

Consent is often thought of as a permission (either general or specific) granted

to someone to make something happen or perform certain behavior. To consent often

means giving this permission, either implicitly or explicitly. While this intuitive

definition provides a good starting point, it does not quite capture the intricacies

and nuances of consent. How is the permission to be manifested? What does it

mean to give this permission? What exactly am I giving permission to? To whom

am I giving permission and for how long? Should I be giving permission? What if I

would have given permission had I known it was being sought? Would someone else

in my shoes have given permission?

As we explicate below, the dimensions of consent can inform and flesh out
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existing HRI topics and findings. Returning to the subfields listed above, work on

touch has already broached questions of trust, social cues, and the delicate terms on

which robots should presume to touch a person [CKTK14, VET13] . Even simple

forms of robot-initiated touch evidence gender effects and workplace norms, and are

evaluated accordingly [AS18b, WFEŠ16]. Proxemics has broached many consent-

related themes, including how people compensate for robots intruding into their

personal space [SJWE12]. Spatial preferences, for example how a robot should ap-

proach someone, have received sustained attention [SKWD07, KSAO+14], including

how people adjust those preferences to aid in a robot’s understanding of social sig-

nals [MM15]. The gaze of a robot can exert similar force on an interactant’s social

“space” and shape how a robot’s role is perceived [FWL+13, SS17].

Sex robots have directly raised various concerns about consent, including the

threat of being “ever-consenting” models of submission to abusive sexuality [Gut12,

SA17, SA16]. The risk of neglecting consent as a component of interaction is to risk

robots being submissive by default, allowing them to be held up as ideals against

people who refuse to consent to abuse. Indeed, some wonder what consent is for

such an intimate interaction [FN17]. But it is not just a headline-grabbing issue

like sex robots that makes consent salient. The socially assistive role for robots

in eldercare residences, especially when those served suffer from dementia, call up

numerous questions about “informed consent” and privacy among all stakeholders

involved [PNŠ+17, IJVE16]. Consent may thus bind HRI even more strongly to

issues for public deliberation around social institutions and their purposes.

In this chapter, we introduce different kinds of consent with the help of legal

theory. We then propose some concrete suggestions for how consent can be bro-

ken down and understood for settings of human-robot interaction, as well as how it

can be used to drive both empirical and technical research forward. More specifi-

cally, in Section 8.2 we take a deep dive into five different forms of consent defined

in common law, exploring, with examples, how they influence social behavior and

normative expectation. In Section 8.3 we resurface and briefly discuss how consent

issues can arise in robotic application scenarios that are relatively mundane, and
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not “normatively-weighty.” In Section 8.4, we discuss the implications for the HRI

community and put forth four research directions – involving research questions and

architectural considerations – that take into account this nuanced understanding of

consent. In Section 8.5, we provide some practical recommendations for how HRI

researchers can make their results more consent-aware in the near-term.

8.2 Legal Landscape of Consent under the Law of Inten-

tional Torts

8.2.1 Conventions, Norms and Laws

The normative landscape of a society can be classified into conventions, norms, and

laws. These govern individuals’ behaviors, based on the degree of their normative

strength, and the level or type of sanctioning for their violations. For example,

a behavior or conduct that is a convention suggests a stable pattern of behavior

[HLM+17], a societal regularity like people choosing to walk on the right, even when

indoors. There may or may not be consequences for violating a convention. Even if

they are violated, the wrongdoer is typically presented with a mild push to conform

or a small dose of scoffing. Certain types of wrongful conduct can rise to the level

of a norm violation. We can think of norms as conventions with an added level

of sanctioning, in a stricter sense than the scoffing associated with conventions.

Sanctions for norm violations can be penalizing and are intended to change the

behavior of the wrongdoer. For example, walking into a Hindu temple with shoes on

is a serious norm violation that can incur social sanctioning and potential banishment

from the corresponding social group. Behaviors achieve their highest normative level

when they are codified into law. Laws deter wrongful behaviors that society has

deemed to be harmful to the basic functioning of the society. Without laws, society

cannot run. Because laws are codified and interpreted repeatedly over the course of

centuries, the legal landscape has attained a degree of maturity and sophistication

that can serve as a guide to situate less official normative elements like conventions
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and norms. That is, exploring and dissecting the legal landscape can provide us with

some ammunition when we tackle less normatively charged situations, ones that are

more common in everyday life. Below, we explore specifically the notion of consent

from a legal standpoint, but note that the framing applies to conventions and norms

as well.

In particular, we will primarily focus on the legal landscape of torts. In addi-

tion to tort law, the doctrine of consent heavily features in criminal law and contract

law. In all three legal systems, there can be legal action for wrongful conduct, and

consent can play a role in modulating the repurcussions of the conduct. Contract law

is concerned with cases where individuals can negotiate and craft their own rights

and reponsibilities towards each other. Most of our social interactions, however,

are largely non-contractual, and tort law holds individuals legally accountable for

the consequences of their actions in these cases. Tort law developed through judi-

cial decisions in common-law courts, and later was codified into statutes and laws.

Like tort law, criminal law is codified in statutes and laws and is aimed at addressing

wrongful conduct. Still, criminal law is different in at least a couple of regards. First,

tort law views certain acts as wrong in the private sense, one for which a defendant

will owe damages to the victim. Criminal acts, on the other hand, are deemed to

have wronged not just the victim, but the society as a whole, and the wrongdoer

is deemed to be deserving of punishment. Second, while crimes can also be torts,

criminal liability requires the defendent to have a more culpable state of mind than

does tort liability.1 Here, we are interested in exploring how consent can (or cannot)

mitigate behavior that is deemed wrongful in the broadest sense – everything from

the slightest deviations from customs to the most egregious violations of our moral

code. To do so, we think that the law of intentional torts allows us to best begin

this exploration, as it covers wrongful conduct broadly without also having to tackle

issues of contractual meeting-of-the-minds, mens rea, and punishment.

As noted earlier, torts are a legal wrong committed upon person or property
1There are other differences between criminal law and tort law including who can bring a case

- individuals or government, where can a case be brought - civil or criminal, and what are the
possibile penalities.
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and, unlike contracts, require no prior agreement between parties. Every member

of our society is obligated to pay damages if their actions harm others. One va-

riety of torts, known as intentional torts, is particularly relevant and covers those

situations in which intentional actions cause harm. There are several types of inten-

tional torts, including harmful contact (battery), apprehension of harmful contact

(assault), unlawful possession, use and alteration of personal property (trespass to

chattels, conversion), restricting personal movement of others (false imprisonment),

unlawful entry into the land of another (trespass to land), and intentional infliction

of emotional distress. A crucial doctrine applicable in all types of intentional torts

is the notion of consent, which can alter the morality of another’s conduct [Hur96]

and potentially permit otherwise wrongful conduct. The doctrine is deeply rooted

in history and stems from the Roman maxim volenti non fit injuria, latin for “to a

willing person no injury is done.”

Consent can convert what would be “trespass into a dinner party, a battery

into a boxing match, a theft into a gift, and rape into consensual sex”[Hur96]. Con-

sent can not only convert a wrongful behavior into right, but also can grant another

the right to do wrong. In this latter sense, it is less about flipping the normative

valence of an act to make it right, and more about granting permission to perform

what is ordinarily a morally wrong act. In both cases, consent has a tremendous

amount of normative power and is an important concept that is central to every

interaction. There are several forms the legal notion of consent can take and we

explore each below.

8.2.2 Actual Consent

Actual consent is the “gold standard of consent” and is a person’s subjective will-

ingness to permit tortious (wrongful) conduct [Sim17]. It is generally considered to

be the case that consent is limited to the person’s mental state and does not also

include the communicative act or signal. That a person demonstrates or evidences

their consent via language, gesture and other means is separate from their truest

“consent,” which is their subjective acquiescence.

233



A holds out her glass and asks B to take it and bring her some water.

B takes the glass from A.
(2)

Here, A has consented to what would otherwise be trespass to chattels, or

wrongful taking of property. Now, B’s actions would need to cause some damages for

them to be tortious, but we will set aside other such legal issues (damages, causation,

intent etc.). Instead, we will focus on conduct that could be wrongful, and explore

how consent impacts it.

We can distinguish two forms of actual consent: express and inferred. Ex-

press consent refers to situations when the consent is demonstrated explicitly either

orally or in written form (i.e., linguistically). Inferred consent is when the subjective

willingness is inferred from the person’s conduct. (1) was an example of inferred

consent, while (2) below is express.

A says to B “You may take my plate.” B takes A’s plate. (3)

The statement “you may take my plate” by A literally grants permission to

B to take away the plate. A slight variant of this if A says “take my plate” leaving

out the permission granting part. Note that while the statement “take my plate”

does not literally state “you are permitted to take my plate”, this permission can

be directly inferred from the imperative form (as it does not make sense to instruct

someone to take the plate without allowing them to do so – this is the crux of the old

deontic principle ascribed to Immanuel Kant that “ought implies can”).Utterances

where the utterance semantics does not directly express the intended semantics are

called “indirect speech acts” (ISAs) and are widely used in social contexts for proper

conduct, often to meet politeness norms (e.g., [BS13]). We will discuss more about

ISA’s below.

Returning to express consent, one distinction not often drawn in the legal

literature is between express consent that is direct versus that which is indirect.

A says to B, a bellhop, “Can you pick up my bag, please?

It’s quite heavy.” B picks up A’s bag.
(4)
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Here, A was clearly consenting to B’s actions, but it was certainly not direct

in the sense of the semantics of the utterance. B needed to determine that A’s

utterance was in fact a command or at least a request for B to perform a specific

action. ISAs of this sort can be highly conventionalized, and thus it is possible B

interpreted the specific linguistic form just as he would the direct utterance “pick

up my bag.” Crucially, because consent is a mental state, we must consider the

possibility that direct and indirect expressions are possible.

The degree to which a dialogue can be indirect is exemplified in (4), below.

A arrives at an expensive restaurant and is greeted by B, the Mâitre D’.

B welcomes A and then walks over close to A and says “may I?.”

A extends his arms. B takes off A’s coat.

(5)

Here, A actually consents to B’s contact and taking his property. Not only

is consent signal indirect, even B’s utterance soliciting the consent is indirect. In

fact, B’s utterance does not even reference the particular act for which B is seeking

consent. Yet somehow, A has deciphered what act B wants to perform and consented

to this act. The story would have been quite different if B, after asking A’s permission

then proceeds to do a pat-down. This would be acceptable in airport security, but

not in a restaurant.

8.2.3 Apparent Consent

A second, and lesser, form of consent is one in which the person does not actually

consent, but the actor reasonably believes that the person actually consents. In these

cases, the person has not formed the subjective willingness to permit the conduct.

Tort law requires not just that there be no actual consent, but also that there be no

reasonable belief that the person consents. Unlike actual consent, which transforms

or negates the wrongfulness of the act, apparent consent serves to grant permission

to an act that still remains morally wrong.
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A (never been to a doctor) visits a doctor. B, the nurse, touches A

to take her blood pressure. B does not reasonably know that A is averse

to physical touching.

(6)

A gets up from her table at an expensive restaurant to go to the

bathroom. She places her crumpled napkin on the table by her plate.

B, a waiter, comes over and folds her napkin. A has previously never

been to expensive sit-down restaurants before and find this a bit strange

that B touched her napkin.

(7)

In (5) (a variant of [18991]) and (6) B cannot rely on actual consent, because

A was not actually consenting, but B might be able to use apparent consent (or

possibly even presumed consent, discussed below) to preclude liability for battery in

(5) and normative sanctioning in (6). A may or may not have liked her napkin to

have been folded in (6) but whether she objected to it or even just did not consider

it, we can argue that she did not actually consent to it in either case.

The question of whether the actor can “reasonably believe” that the person

consents can be based on evidence obtained from the person’s conduct, others’ con-

duct, or customary norms at play.

At the end of a successful business meeting, B reaches out and shakes

A’s hands before A can react. Unbeknown to B, A objects to touching

and shaking hands when greeting people.

(8)

A and B are moving about in a busy restaurant. B bumps into A as he was

walking to the bathroom. A objects to touching.
(9)

A is standing in front of B in line in a coffee shop. Believing A to be

his wife based on her demeanor, pocket book she was carrying and her outfit,

B gives her a surprise hug from behind. A, however, turned out not to be

B’s wife and objected to touching.

(10)

In (5), (7) and (8) the evidence for B’s arguably reasonable belief that A

was actually consenting may come from what is customary in a doctor’s office or in
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a business meeting or in a crowded space. However, if in either case B knew that

A objects to being touched, then B cannot rely on apparent consent to preclude

liability. In (9), the evidence for B’s reasonable belief came not from custom but

directly from A’s conduct and appearance.

8.2.4 Presumed Consent

We can next consider the case when the actor knows that the person did not actually

consent, but reasonably believes that the person would actually consent, if asked.

This is a counterfactual form of consent. This is different from apparent consent,

where the actor reasonably believes that the person actually consents. This form of

consent is typically, but not always, encountered in emergency situations when it is

infeasible to obtain consent.
A, a child, is chasing after his ball runs into oncoming traffic on a

busy road. B, who’s nearby, notices this and pushes A out of harm’s way,

but in doing so A breaks his arm.

(11)

A is standing on the street corner. B walks up to A and taps her on

the shoulder and asks her for directions.
(12)

In both (10) and (11) B is not liable to A because of presumed consent. In

(10) the situation is emergent whereas in (11) it is not. Presumed consent has a high

burden, additionally requiring a justification for the contact. For example, the actor

must show that the contact was minor and was in fact customary in the community.

8.2.5 Constructive Consent

Often known as “implied-in-law” this form of consent is rare, but quite extreme.

It considers conduct that causes socially justifiable minor acts that not only not

require consent, but in fact can be performed despite explicit objections to the act

and expressions of non-consent. Here, the standard is an objective one of whether a

reasonable person would consent under the circumstances.
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A drives to work and arrives at the scene of an accident. B, a police officer,

orders him to wait in the car while the scene is cleared.

A demands that he be allowed to turn around and leave the scene.

B refuses fearing safety risks.

(13)

B is not liable to A for false imprisonment, a variety of intentional tort, be-

cause of constructive or implied-in-law consent. This form of consent is controversial

particularly because of its blatant disregard for the person’s actual objections.

The concept of consent permeates our legal system beyond intentional torts.

Consent is a critical defense to certain criminal conduct and plays a role in mutu-

ally beneficial contractual agreements. One interesting twist in criminal law is the

existence of a category where consent is not a defense. That is, even if the person

granted the actor consent, the conduct might still be deemed to be wrongful and the

actor culpable. For example [19880, 20112]:

A and B engage in a sex act in which A consents to B using a dangerous

weapon during sex. B uses the weapon on A and A is harmed.
(14)

Here, B might be criminally liable in the Commonwealth of Massachusetts as

consent is no defense to a charge of battery and assault with a dangerous weapon.

8.2.6 Reluctant consent

The framing of consent as a defense (to a tort claim or a criminal charge) does not

consider how fervently one gives consent. If there is legal basis in evidence for one or

more forms of the above consent it can be sufficient. However, exploring the amount

of enthusiasm shown in regards to consent could have normative implications even

if it does not have legal ones.

A enters a taxi driven by B. B takes an unusual route that involves driving

through a part of town that A associates with past emotional trauma.

A says nothing.

(15)

By not objecting to this route, B might be able to rely on a subsequent
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defense of apparent consent when faced with an intentional infliction of emotional

distress claim. It might even be the way most taxi drivers drive to the location that

A intends to reach. However, A’s consent is absent and, at best, reluctant. The

level of A’s consent might be evidenced by facial expressions suggesting it or by

other gestures like looking away from the windows or closing eyes. Normatively, it

seems B should take this reluctance into account and explore an alternative route.

The norms at play include business aspects of ensuring that the passenger is kept

happy, the human decency aspect of not having an interactant relive a past trauma

and so on. Thus, the legal framework, while giving us a grounding for extreme

behavioral violations, might be insufficient. We might need to consider lesser norm

and convention violations that are especially evident in cases of reluctant consent.

A thorny issue in (14) is whether B had the duty to present other alternatives.

The legal system is not entirely clear on this issue and some scholars have compared

reluctant consent with fullness (or partial-ness) of consent and their connections to

the doctrine of the assumption of risk. What risk does A assume in taking B’s route?

If B presented A with a second less-traumatic route, and A still reluctantly chose the

first route, then the doctrine of assumption of risk may play a role in clearing B. One

takeaway here is that the consenting process is much more complicated than a single

interaction and typically involves a complex mix of duties and responsibilities of the

actor and the mental state and behaviors of the person who arguably is deemed to

have consented.

8.2.7 Other Issues

We have only scratched the surface of the intentional tort landscape around the

notion of consent. There are numerous other issues around whether a person is

competent or has the capacity to even grant consent. The law has established that

for consent to be valid the person must have capacity to consent. Capacity is typi-

cally gauged by age and mental competence. Children, those suffering from mental

disorders, and intoxicated persons are deemed to not have the capacity to consent.

This means tortious behavior will not be defensible even if consent is obtained from
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those without the capacity. Consent that is granted can also be revoked at any time.

Consent can be conditional in that it is ineffective if there has been a failure to meet

conditions that the consenter has imposed. Consent must also be voluntarily given

and not coerced or obtained under duress.

Beyond intentional torts, notions of consent appear as another related legal

principle in torts of negligence known as “assumption of risk.” Assumption of risk

is often treated as consent to conduct that is merely negligent [Sim06, Sim87]. The

doctrine of assumed risk connects consent with whether there might have been some

uncertainty associated with the consequence of the conduct. In the medical context, a

related notion known as the doctrine of informed consent is used to receive a patient’s

acknowledgement that there are risks associated with a particular procedure even if

the doctor performed it correctly.

Consent is also a crucial doctrine in criminal law (as noted earlier) and in

contract law. Unlike tort law, consent in contract law is centered not around inter-

nal subjective mental state, but external performance. Moreover, in contract law,

consent serves as a proxy for evaluating whether the parties voluntarily entered into

a contract.

Finally, it is worth clarifying that the legal principles in the chapter merely

serve as a guide to unpacking an otherwise complex normative landscape in many

social settings. We do not require or even suggest that robots be granted any form

of legal status as a person or agent. On the other hand, we want to stress that it is

insufficient to treat robots as any other form of technology where consent is equivalent

to user preferences. Past research has shown that robots create expectations in

people that they will be less like passive technologies (e.g., washing machines and

cell phones) and more like persons. While we do not take a position on the question

of whether robots have “agency” in a philosophical sense, we do encourage thinking

about humans in social spaces not in terms of "users" but in terms of "interactants"

[Cal10]. Robots, as part of their functions, might interact with other non-users as

well. Moreover, it is not enough to express the limitations of the robot to users as

users impute agency and capabilities beyond that which the robot has regardless of
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prior disclaimers.

Entangled with these foundational legal notions, the nuances of consent can

be affected by other aspects of a social context like, for example, gender and culture.

Gender and cultural variables associated with interactants and social groups can

affect behavior and expectations associated with consent. For example, what is

considered presumed consent in one culture might not be in another. Not only will

robots need to account for the cultural considerations of the society in which they are

deployed, but also potentially the cultural diversity of their interactants within that

society. Many communal settings like restaurants and parks might require robots to

carefully acknowledge cultural variations among their human interactants.

8.3 Consent Issues in Robot Applications

Consent issues can arise any time there is interaction between agents. As we have

seen, these consent issues come in a variety of forms and are highly dependent on the

social space in which the interaction is taking place. Thus, although the notion of

consent might seem somewhat dyadic, what influences the dynamics of granting and

revoking of consent is not merely dyadic, but in fact influenced by the normative

expectations of the entire social space. This means consent issues can arise even

in scenarios that on the face are not socially or morally charged, as the social set-

ting affects the normative expectations of the interactants. In this section, we will

consider two robot applications, in increasing order of “normative-charged-ness” of

scenarios in which they are typically deployed: (1) robot vacuum cleaners and (2)

robot waiters.

8.3.1 Robot Vacuum Cleaners

Some have estimated that robots account for over 20% of the world’s vacuum clean-

ers. Even if this is a bit overstated, robot vacuum cleaners are ubiquitous. These

robots have a range of actuation and sensing capabilities, albeit much more lim-

ited than a humanoid robot. They have cameras, IR and laser sensors and gyros
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to be able to map out a house and remember what parts of the house have been

cleaned and what remains. They also have other features to avoid bumps, recognize

no-go areas in the house and schedule cleaning sessions. Many are beginning to

come equipped with WiFi capabilities and connections to Alexa and Google Home

voice-activated personal assistants. These robots are not simply passive devices that

provide a service, they are mobile robots that, numerous studies have shown, cause

humans to impute agency and capabilities to, beyond even that which the robot

actually possesses [SGGC07, dG16, Sch11].

The robot vacuum cleaner’s primary designed function is to vacuum and clean

the house, and not necessarily to interact socially with humans. Even so, before,

during and after the robot performs its cleaning duties, it can and will interact

with humans because it is deployed in an otherwise social space. It’s owner might

interact with it to decide appropriate cleaning schedules so as to take into account

the presence or absence of other members of the household. The robot vacuum

cleaner might inadvertently interact with non-owner humans who might be present

in the space the robot is cleaning. Humans might direct the robot to go elsewhere

or take an alternative cleaning route to avoid being disturbed. During its operation,

the robot is also mapping the house and possibly recording video as it learns about

the layout of the house and habits of the humans living there. Consent issues can

arise quite easily in many of these interactions - robot getting in the way of humans

moving about the house, cleaning parts of the house that are not necessarily no-go

areas, but temporarily off-limits, cleaning near children’s toys, some of which might

be small parts, listening to private conversations in the name of listening for human

commands, and recording video in private areas of the house. In many of these

cases, the humans may not have actually consented, but can the robot assume there

is apparent or presumed consent?

8.3.2 Robot Waiters

We have seen in the examples presented in Section 8.2 that consent issues can arise

quite frequently in restaurant scenarios. Robot waiters constantly interact with their
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assigned customers, other customers walking in the restaurant, chefs, and managers.

During these interactions, the robots through their appearance and functional (ac-

tuation and sensing) capabilities generate a set of expectations in the interactant

humans that together establishes the social space for that particular interaction

[RR11].

Distinct from robot vacuum cleaners, however, robot waiters are designed to

provide a service that is inherently social, but not necessarily high-stakes or weighty.

They direct customers to their seats, take orders, deliver food, check for comfort, and

are meant to generally address grievances and comments issued by the customers.

Each of these interactions involves entering personal spaces, touching humans, giving

and taking possession of objects (some belonging to the customer). Most, if not all,

of these interactions are consent-driven, in that some form of implicit or explicit

consent was given or presumed, otherwise these behaviors would be problematic.

For example, consider the situation where the robot waiter is tasked with

removing plates from a customer’s table once they have finished eating. Customers

might explicitly call out to a robot and ask for their plate to be removed. They

might actually let the robot waiter know that they have finished their meal, as an

indirect way to signal their desire for the plate to be removed and a check to be

delivered. More often than not, customers will not make this request explicitly or

even indirectly. Instead, they will provide implicit cues to suggest that they are done

with a particular part of the meal and that the waiter can take away their plate.

They issue this consent by either arranging their forks and knives a particular way,

or push their plate away a bit, or even lean back away from the table as the waiter

approaches. It is also possible that the customer is not really thinking about the

waiter taking away their plate, but would not mind if the waiter did so. This might

be conveyed via a smile that is offered after the waiter has already leaned in and

grabbed the plate. The waiter may have assumed the customer was done with their

meal because they had not been eating anything from it for a while. Robot waiters

need to be able to read these subtle cues. Robot waiters must also be able to read

cues in which the customer does not want their plate taken away from them, even if
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it seems as if they are done, or they have inadvertently placed their fork and knife in

a “finished” position. If the robot waiter does not pick up on refusal hand-gestures or

on the customer’s grabbing of a fork to show they are still eating, it can negatively

impact the service and experience. It is worthwhile to note that regardless of the

aesthetic appeal of the robot or of its ability to display pleasant emotions, taking

away a customer’s plate while they are still eating without their consent (in one of

the forms mentioned earlier) can ruin the interaction.

This is just one example of a scenario where a robot’s behavior, which would

generally have been considered preferable, is suddenly deemed unwanted. Such a

robot must be able to recognize the corresponding consent-cue to avoid the entire

interaction from being impacted. Other such examples of behaviors that might re-

quire a consent-cue include: friendly touches of the customer’s shoulder, filling or

not filling water or wine, approaching the table to check on the customer’s experi-

ence, picking up an item the customer may have dropped on the floor, clearing a

path between tables by moving customer’s garments, bags and chairs or requesting

customers to make way, helping a customer take off their coat, and many more.

8.4 Research Directions for HRI

In this section, we explore possible research directions for HRI as the legal struc-

ture presented in Section 8.2 allows us to think about consent more deeply. But,

how can this legal structure help with designing better human-robot interactions?

We specifically consider four research directions or themes that the HRI research

community is best positioned to address: (1) when consent is applicable, (2) how

consent can be detected, (3) what happens when snap judgments must be made,

and (4) what the different roles for a robot are when it is fully integrated into the

normative fabric of society. For each theme, we will raise some research questions

and provide architectural considerations that the HRI community might consider.
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8.4.1 Applicability of Consent

When does a behavior need consent? Presumably, there are behaviors that robots

can perform that do not need consent. For example, a vacuuming cleaning robot

cleaning a kitchen floor might not need consent for choosing to follow one (random)

cleaning path versus another (random) cleaning path. Even in more socially-charged

settings, it would be unnecessary for say an elder-care service robot to have to secure

approval for every single motor movement. This would be burdensome and possibly

even negatively impact the interaction itself.

Current HRI research has provided some guidance into what behaviors are

preferred versus those that are unpreferred. The angle of approach example presented

in Section 10.1 is one such contribution. We can, at a first approximation, note that

unpreferred behaviors will probably need to be consented or at least need some

sort of justification (viz. apparent consent, presumed consent). Also, it is possible

that in many cases even preferred behaviors could require consenting. Behaviors are

situated in a dynamic environment and their normative valence and the applicability

of consent can, therefore, shift in time. Consider this example:

A and B are sitting at a shared library table that can seat two. While studying,

B moves some textbooks around pushing several books over to A’s side

of the table.

(16)

B’s behavior caused an intrusion into A’s space. B’s behavior, however, did

not start out that way. It was when B’s books crossed the imaginary halfway line on

the table between A and B that B needed consent. The implicit norm at play was

the idea of a fair partitioning of a shared work space. The norm became activated

once B’s book crossed this imaginary center line.

Or consider this service example:
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A is a patient at a hospital and is recovering from a surgery in his assigned

room. A receives guests and wellwishers who bring him cards, flowers and some

of A’s favorite take-out Chinese food, which they share during the visit.

B, a janitor, is tasked with cleaning A’s room and throws out not only the

Chinese food containers, but also some of the cards.

(17)

Once allowed into the room, B’s behavior of clearing the dirty food containers

does not need consenting from A, but clearing the adjacent greeting card might. The

underlying norm hinges on the agent being able to detect and consider questions of

ownership, possession, and the use of space, in addition to the normative affordances

offered by the objects in the environment. The greeting card serves the purpose of

lifting A’s spirits and therefore is an important component of the environment. B’s

action of clearing it might eliminate this positive utility. Note, it might be entirely

inappropriate to even ask for consent to clear the greeting card as that would suggest

B’s normative proclivities.

8.4.1.1 Research Questions

When does a behavior turn from being consent-free to one that requires it? Are

there some behaviors that require robot consent, but not human consent? Are social

interaction cues of proximity, eye gaze, and so on also cues suggesting that consent

may be needed? Who should be consenting in a particular situation and if that

person is unavailable, should the behavior be postponed? Do humans expect robots

to have the same level of understanding of consent as they do with other humans?

Do they hold robots to higher standard, i.e., more conservative, when it comes to

asking for consent? A popular maxim used in connection with consent in sexual acts

is – “yes means yes, no means no.” – do we expect the same understanding from our

robots?

246



8.4.1.2 Architectural Considerations

One important shift in architecture design that is prompted by consent processing is

that even what are otherwise considered to be automatic behaviors in robots (e.g.,

approach and obstacle avoidance behavior, eye gaze and blinking behavior, posture

and gesturing, etc.) are subject to modulations based on consent. This, in turn,

requires the architecture to have built-in suppression mechanisms that can be trig-

gered by changing consent status and interrupt, suppress, or alter these reflex-like

behaviors. In addition, the architecture requires a knowledge base with common

sense knowledge about the different consenting conditions and the appropriate mod-

ulations. For example, it will require general knowledge about possession of property,

what actions are and are not allowed with another person’s property, and under what

circumstances the robot can dispense with certain rules and norms because there are

role-based expectations that trump them. In the above example, even though the

food container was technically owned by patient A, a janitor robot B would have had

to make the inference that based on its role to clean up used items – and an empty

food container was a used item – the ownership of the container was no longer an

issue and it was, in fact, expected from B to take the container away from A. This

is a case where two norms clash, the norm of following ownership rules versus the

norm of fulfilling one’s duties based on one’s roles. The challenge then is to detect

that the role-based norm of cleaning up the container trumps the ownership-based

norm of not touching it precisely because it implies consent by the owner to do

so. Recently, research progress in explicit norm representations [SSA+17, SSM17],

norms relating to object affordances [SS16d], norms relating to ownership [XT19] and

other prerequisites for consent reference what social norms might be present and how

they legitimize behavior, which in turn might suggest how they are triggered and

modulated by consent.

Detecting shifting consent-dependencies of behaviors is particularly challeng-

ing from a technical standpoint. Detecting consent applicability shares many similar

technical aspects to detecting consent itself. The robot will need to detect a variety
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of cues from its interactant, others in the environment, and other animate and inan-

imate objects that constitute the social space. A technical designer must consider

the level of symbolic abstraction for a representing a behavior before it qualifies as

one applicable for consent. Clearly, step-wise motor movements and joint angles

might be too specific and not necessarily applicable. On the other hand, higher-level

behaviors of swinging arms and even higher-level conduct of picking up and manip-

ulating objects might be candidates for consent-dependency. It is also possible that

the robot might need to consider the nature of objects it is handling (e.g., knives

versus a bouquet of roses) when performing certain behaviors.

8.4.2 Detecting Consent

At the core of consent-related considerations that we have discussed in this chapter is

the question of how and what consent cues are detected. At first glance it seems like

language, gestures, facial expressions, eye gaze, approach, proximity can all serve as

valid vehicles to communicate one’s subjective intent of actual consent or objection.

But, how can a robot detect consent expressed through an ISA, or through the usage

of objects in the environment? Consider this example:

A was sitting at the bar getting a drink that he already paid for. A

drinks most, but not all, of the drink and then leaves the bar. B a waiter did

not see A leave. B takes away A’s almost empty mug.

(18)

Presumably, B’s conduct was normatively appropriate given that A might

not have objected to the mug being taken away. Note, the mug actually belongs

to the restaurant (leaving aside the issue of who the remaining drink belongs to),

so there is no legal consequence here. We nevertheless use the legal framework to

inform our discussion about consent norms and consent conventions. So, even if A

had just stepped out for a smoke or to take a call, B’s actions might have been

justified. Now, contrast this example with one where A leaves his bag on the seat

and goes to the restroom. Here, B’s actions of taking away the mug might not be

justified. A might object that he had not finished his drink and his intentions were
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made clear by him leaving his bag on the chair.

There are many different types of consent cues. Some cues are consent-

granting, in which case they have an illocutionary force of conveying permission to a

behavior. Alternatively, some cues are consent-denying, in which case they have the

force of conveying explicit non-consent to a behavior. In some instances, the person

is not yet ready to signal, but they will eventually. These consent-withholding cues

suggest that the actor may return at a later specified or unspecified point to inquire

about the consent. For example,

B, a waiter, is about refill A’s wine glass. A gestures with a downward

facing open palm and says, “not yet.” B retracts.
(19)

Here, A did not say to never fill his glass, instead withheld consent until some

later point. Now, there is a subtlety here where A might have instead just said “no”,

which might have been a consent-denying cue, or if prior consent had been granted,

a consent-revoking cue, taking away a prior consent. Finally, the consent itself might

be conditioned and expressed via a consent-conditional cue of A saying “only if it is a

1991 Argentinian Malbec” suggesting that refilling is only acceptable for a particular

variety of wine.

These different types of cues not only convey whether or not consent is given,

but also specify which behavior they refer to. In (18), when A says “not yet” they

are not withholding eventual consent for B pouring the wine on them. The content

of the consent is difficult question that poses many challenges.

The legal landscape also suggests that for succeeding on a defense of consent,

the actor must also prove that the person has the capacity to consent, is consenting

voluntarily and has all the information necessary to decide. The latter of these ele-

ments is the basis for the doctrine of informed consent, common in medical settings.

8.4.2.1 Research Questions

How to detect social and environmental consent cues? Are there certain cues that

transcend situations and universally signify consent or non-consent for any behavior?
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Is it enough for the robot to detect and then immediately act on a consent cue

or should it ask for confirmation? What is the role of uncertainty in detection?

Crucially, what if the cue was not only unclear in a noisy environment, but also

ambiguous in its scope and content? If the robot is unable to glean actual consent,

should it explicitly ask the human or should it be satisfied with inferring apparent

consent?

8.4.2.2 Architectural Considerations

To be able to detect cues, the robotic architecture must be able to first process and

integrate percepts that can serve as cues obtained through various sensory modal-

ities. Consider linguistic cues, which, although they seem like the clearest type of

cue, can still be a technical challenge to process. Here, processing consent involves

a degree of intent recognition and processing of potentially indirect cues (via indi-

rect speech acts). Architecturally, it might not be enough to implement statistical

natural language processing and speech recognition systems that do not have a way

to represent contextual variations in the illocutionary and perlocutionary force of

speech acts. A way around this issue would be to explicitly design an architecture

that allows for performing cue-based inference. An approach might be to use a rule-

based strategy where implication rules can represent consent-cues as antecedents

and behaviors as consequents. Cues then trigger rules that determine appropriate

behavior. The normative propriety of the behavior can then computed via logical

modus ponens based on the perception of the relevant consent cues. A variant of

this rule-based approach can be seen in indirect speech research ([BS13]). This sort

of architecture and knowledge representation has also been shown to be amenable

to non-statistical, instruction based teaching and learning via natural language.

In addition to linguistic cues, the robot may have to perform inference from

visual percepts as in (17). In such cases, the robotic architecture must be equipped to

not only recognize objects, but also generate more holistic representations of a scene.

This means object properties need to be inferred and, in dynamic environments,

objects and their properties will need to be tracked. These object representations
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will then need to be integrated with other modalities including the linguistic cues

noted above in order to generate a coherent story for whether or not the robot has

deemed there to be consent in a particular situation.

But that only covers cases of actual consent. The cues in actual consent are

typically limited to those that result from the conduct of the person consenting.

However, in apparent consent situations, the cues can come from not only from the

person who is the target of the behavior in question, but also from others and from

customary aspects of the situation.

The robot must also be able to understand the interactants’ capacity to con-

sent and ensure that they are provided with all the information they need to make

their consent decision. Robots working with certain vulnerable populations – chil-

dren, elderly, substance-abusers, mentally disordered – must account for these as-

pects.

8.4.3 When Consent Does Not Matter

What the legal landscape has shown us is that there are situations where an otherwise

unconsented behavior is appropriate (presumed consent and constructive consent)

and consented behavior is still inappropriate (consent not a defense to certain crim-

inal charges).

In situations like emergencies where consent is presumed, the law places a

high burden on those looking to use this principle in an affirmative defense to an

intentional tort. Presumed consent falls squarely below actual and apparent consent

and has limited scope. But, these are situations in which our robots might find

themselves, possibly even more frequently than imagined. Search-and-rescue robots,

robot astronauts, medical robots and robots in many emergent situations must take

quick action in order to prevent a larger harm.

In certain cases, sex robots engaged in BDSM activities might have received

consent for certain acts, but the law has held that performing these acts (particularly

those with dangerous weapons) can still remain a criminal charge. On a less egregious

note, sex robots that bring spontaneity and creativity into a sexual encounter (e.g.,
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a surprise tickle) might need to rely on presumed consent to provide a positive social

interaction.

8.4.3.1 Research Questions

Should a robot ever presume consent? If a robot does presume consent, should its

scope be kept limited to a few specifically designed behaviors. Presumed consent is

particularly controversial and it, combined with constructive consent, starts tearing

away at personal autonomy. If a person’s consenting of a behavior is taken for

granted or presumed given or worse, ignored, is there not a taking away of a moral

right to autonomy? Should we give robots this privilege? What if it ends up helping

us? Moreover, do we humans expect this from our rescue robots? Some in the HRI

community have explored the role of supererogatory actions (as in (10)) and whether

we expect a street cleaning robot to go out of its way to save a child from an oncoming

car. The technical challenges for designing such a robot share many aspects of cue

detection and norm representations noted earlier. In cases where consent is not a

defense, should robots be designed to never perform these behaviors? How can we

balance robot creativity, spontaneity and risk-taking behaviors (all of which might

have positive social value) with normative propriety? Can the robot presume consent

if it enhances a social experience?

8.4.3.2 Architectural Considerations

While the question of whether or not consent matters in certain special situations is

largely an empirical and philosophical one, we can still evaluate what architectural

capacities a robot must have. Uniquely, a robot must be equipped with suitable

architectural components to ensure that it does not become a passerby, or bystander,

during critical situations. Thus, it is important for there to be coordination within

the architecture for integrating cues suggesting an emergent situation and the ability

to reason against norm expectations. Crucially, such reasoning is required as the

robot needs to deduce that a norm violation might be necessary in order to achieve

a greater good. The architecture will need mechanisms to reason with multiple such
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mutually inconsistent and conflicting norms, all in real-time under extreme time-

pressures imposed by the emergent situation.

8.4.4 Robot Roles

Thus far, we have looked at several examples in which we examined the propriety

of actions of B in interactions with A. While it is natural to think about the role of

a robot as B, and the human as A, in reality, the role of the robot could be quite

varied. Here, we can explore some of the alternative roles the robot plays in an

interaction.

8.4.4.1 Research Questions

First, we can consider the robot as a consenter (or protester), i.e., A. The notion of

robots in this role raises many questions about robot rights and autonomy [Dar16].

Should the robot be able to consent at all? A narrow view of robot rights would

suggest that robot consent does not matter. This view, in turn, might increase the

scope of presumed consent or constructive consent in robot interactions. Can we

then abuse a robot?

B verbally abuses A a personal assistant robot by shouting expletives. (20)

Some might argue that A’s consent towards this behavior is irrelevant as A

is a machine. However, the counter argument to this view is that B’s verbal abuse

sets the wrong normative tone in the environment and therefore should be seen as

wrongful. There may not be emotional distress for A, but there could be for another,

say C, who is watching this interaction.

We can bring in another interactant C who might be a third-party to the

interaction. C could play the role of sanctioner and function to right normative

wrongs in an environment. For example, C could be a manager of a restaurant in

which B a waiter is serving A a customer. Alternatively, we can think of C as a

sanctioner role that could be played by A themselves.
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In such a role, we must ask if it is okay for the robot to call-out and sanction

normatively harmful behavior (see [Fes18] for Alexa pushing back against abuse). In

(19) could the robot defend itself and protest A’s abuse? Should the robot do such

a thing?

Another role a robot could take is not that of a moral arbiter, but that of the

elusive “reasonable person”. In much of the legal scholarship one aspect that has been

at the center of many debates is the objective standard of a “reasonable person”, one

who exercises average skill and judgment and can objectively assess a situation and

arrive at the correct solution. Many legal scholars have argued that such a person

does not exist and is, in fact, by no means average [Gar15]. Nevertheless, robots

might present themselves in the unique position to serve as such a reasonable person.

Can these reasonable robots help resolve conflicts by performing an unbiased and

objective analysis of the facts and situation?

8.4.4.2 Architectural Considerations

The architectural capabilities we have discussed thus far apply to the robots that

serve as sanctioners or reasonable persons. Of particular note, these robots must be

able to detect norm violations, and so also have architectural components to compare

normative cues with norm-based expectations to detect norm violations. Robots in

these varying roles also have the function of deciding if the justifications provided

by parties are acceptable and as such must have mechanisms to infer consent by

exploring the purposes of actions. Investigations into human-robot teamwork have

even included their possible role as repairers of social conflict [JMH15]. Robots must

also maintain honesty [HFA+15] and sometimes even keep secrets [KJKI+15] in or-

der to fulfill the responsibilities [Asa07] imposed by their roles. This also means

that robotic architectures serving any role must be able to represent various sup-

porting aspects of the situations – ownership, possession, resulting permissions and

obligations and whether or not agents have the capacity to consent and have done

so voluntarily with the needed information. The architectures must also be able to

determine precedence relationships to help enable consent inference.
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8.5 Near-Term Next Steps for HRI

In the previous section, we discussed four research directions (or themes) that are

opened for the HRI community by the more nuanced consideration of consent. Criti-

cally, we proposed research questions and technical (architectural) design issues that

will need to be addressed if we are to design fully consent-aware robots. In some

sense, we presented a research vision for normative HRI that is focused on much-

needed technical advancements that are likely to be longer-term. But, what can HRI

researchers start doing today? We do not yet have all the technical capabilities to

build the architectural components needed for fully consentual agents. However, as

we have discussed in Section 8.3, robots are already deployed in many real world

social settings and will need to be able to handle at least some partial set of consent

cues. How can HRI researchers design and evaluate more consent-aware interactions

with these current robots? In this section, we provide some recommendations for

how current HRI researchers can adapt their design and evaluation methodologies

to begin accounting for consent. We expect that by doing so, this will guide future

technical developments in the right direction.

8.5.1 Early-Stage Interaction Design

HRI design is a truly collaborative endeavor and tackling some of the consent is-

sues might need to go beyond architectural modifications of robots. That is, it is

insufficient to only take a robot/technical-centric view and place all the burden of

consent-management to the robot and its underlying A.I. Accounting for consent

must begin at the earliest stages of interaction design. Interaction design involves

considering not just behaviors in isolation, but the generation of sequences of behav-

iors and how such sequences influence and are influenced by particular application

scenarios. Behaviors could include both dialogue and non-dialogue (body move-

ments), and interaction forms the overall specification of the set of behaviors that

technical researchers must build into their robots. Interaction designers can proac-

tively consider consent when designing specific interactions by asking the research
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questions we presented above early in the design stages of storyboarding and proto-

typing. Asking when and how consent will apply to particular scenarios by designers

at this stage will likely prove crucial when designing the specifics of the interaction it-

self and help define the set of robot capabilities. As behaviors are evaluated against a

scenario and flows constructed, interaction designers can ask critically when and why

certain behaviors are acceptable or not, clueing them into whether or not consent

applies in a particular situation. For example, asking when and why it is okay for

a robot waiter to fill an empty water glass raises many interesting questions about

the situation and the nature of the social space that might need to be answered

before a suitable interaction can be designed. The answers might suggest entirely

different interactions for an expensive restaurant versus a fast food restaurant. A

deeper inquiry at that point might shed some light on what factors might turn ac-

ceptable behaviors into unacceptable ones and vice versa. For example, customers

in expensive restaurants might provide consent cues that are much more indirect

and implicit than those at fast food restaurants. Similarly, the interaction designer

could attempt to model the mental state of users in the scenario to consider what

these users would consider reasonable deviations from acceptable behavior. If the

scenario involves emergencies, interaction designers will be able to directly incorpo-

rate notions of presumed consent. For example, when a robot detects that a human

is about to get run over, it can assume presumed consent for pushing the person out

of harms way, even though pushing normally would violate a tort.

8.5.2 Experimental Evaluation and User Studies

When robotic systems are introduced into a real world application scenario, they

can have a significant impact on usability, user experience, and social aspects like

impact and acceptance. Prior to such an introduction, a strong evaluation method-

ology is needed to enable fair comparisons of competing HRI systems along various

dimensions including efficiency, feasibility, safety, and social and psychological as-

pects. There have been many approaches proposed in the literature for the most

suitable set of metrics for evaluating robots. A prominent one is by Steinfeld et al.
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[SFK+06] who propose a set of task-specific as well as common metrics for assessing a

robot’s performance. In this comprehensive work, they discuss some socially-driven

metrics (persuasiveness, trust, engagement and compliance), but these are largely

discussed in connection with robots whose primary function is to interact socially

with people. As we have discussed, socially-relevant consent issues can arise even

when the robot’s primary function is not social interaction; consent issues can be

evoked from the robot simply operating in a social space. The common metrics pro-

posed by Steinfeld et al. do not consider such normative and socio-cultural aspects

of a scenario in which the robot is deployed. Thus, urgent future work is needed

to develop suitable metrics and measurement instruments that explicitly probe for

consent.

In addition, we propose that interaction researchers studying behaviors, but

not necessarily studying consent, can and should provide some more guidance about

the ecological validity of their findings. They can do this by asking when preferred

behaviors become dispreferred and vice-versa. User-study questionnaires already

ask questions about user preferences and likeability of behaviors. These can be

extended to include questions about dislikeability and what makes a certain behavior

inappropriate, and when dispreferred behavior could become preferred. By exploring

ways to extend these questionnaires we can study how consent influences existing

interaction research findings and provide some new ideas for future research inquiries.

More generally, when robot behaviors are being evaluated for a particular

use-case, HRI researchers must consider the nature of normative expectations held

by humans present in that use-case, and ensure that their experimental subject-

population is representative of those in the real world. Most HRI user studies obtain

demographic information either to directly study gender or some other effect relat-

ing to the identity of participants, or indirectly to correct for individual differences

across a population. We are suggesting here that consent-preferences are an equally

important (an possibly biasing or confounding) factor to either study or at least

correct for in user studies.

Finally, when drawing conclusions from user-studies HRI researchers must
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make explicit the types of consent-related aspects they have accounted for in their

experiment. That is, their conclusions and claims about behavioral preferences must

be accompanied by the scope and nature of the scenario(s) in which those behaviors

are situated. During the peer-review process, we urge reviewers to extend this inquiry

and consider how consent or lack thereof can impact these results and push the

researchers to make explicit these limits.

8.5.3 Revisiting Past HRI Experiments

The future outlook for HRI research incorporating this rich notion of consent is

quite exciting, and we hope the suggestions provided in this chapter will facilitate a

smoother transfer of future interaction research results into real world robotic appli-

cation domains. That said, it is still unclear what we are to do with past and current

research results like, for example, research on “robot approach” that we alluded to

in Section 8.1. A formidable challenge lies in understanding the scope of the results

in not only approach research, but also dialogue, eye gaze, proxemics, touch and

other interactionally-relevant behaviors. We know that behavioral preferences can

be highly contextualized and dictated by the task at hand. But, it is unclear how

the results for particular studies can be generalized beyond the specific experimental

setting in which they were designed.

For example, in eye gaze research, HRI researchers have suggested that high

levels of mutual gaze express feelings of trust and extroversion, and gaze aversions

express feelings of distrust and introversion [AS17a]. However, this is not universally

true, as an unwelcome extended eye gaze might be suspect and can adversely impact

trust. In conversational contexts, eye contact is seen as more acceptable in emotion-

ally neutral topics but not so when the conversation is embarrassing [AS17a], sug-

gesting that the topic of conversation could be a modulating factor when evaluating

robot perceptions. Although there could be other modulating factors in particular

scenarios, we propose that consent is a key modulating factor in all HRI settings,

and whether or not certain eye gaze strategies are deemed socially acceptable (or any

other socially relevant evaluation metric) is dependent on whether the interactants
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mutually consented to each others behavioral choices. In situations where there is no

explicit consent, the question then becomes if the social setting provides a reasonable

basis for establishing some implicit form of consent. Without a reasonable basis for

it, a social space that places a higher bar on consent will not allow for prolonged eye

contact even if conversations are emotionally neutral. In order to extend the appli-

cability of many such HRI studies into real interactional contexts, what we need is

a deeper understanding of the social spaces anticipated by these studies. We need

a better sense for what sorts of factors need to be present or absent to reasonably

establish that either consent can be apparent or presumed in the social space, or

actual consent was indeed given.

As another example, consider research in politeness in natural language. HRI

researchers first looked at speech modifications as a way to modulate politeness and

thereby improve human perceptions of robot helpers. Torry et al. [TFK13] argued

that robot helpers create a positive impression when using hedges (“I guess” or “kind

of” or “probably”) and discourse markers (”I mean” or “like you know”). Their study

involved humans observing robots employing those dialogue strategies, not humans

directly interacting with such robots. Strait et al. [SCS14] subsequently noted

that such speech modification strategies alone are insufficient and other aspects of

the interactional scenario like participants’ personality, dialogue efficiency and task

success also impacted the perceptions of the robot. They explored the relative effects

of communication strategy as modulated by interaction modality and presence as

well as robot appearance. Their results showed that some prior claims made by

Torry et al. do not generalize to real interactional scenarios where other modulatory

factors might be at play. Their conclusions leave open the possibilities for further

situational factors that might modulate interactions. We believe this is a step in the

right direction, and we urge HRI researcher to make more explicit the spectrum of

modulatory factors that might be present in a particular HRI scenario. Specifically

though, we reiterate that consent is one such modulatory factor, and an extremely

important one at that. We believe the effect of consent is critical to evaluating robot

perceptions, and on par with other influential factors such as gender effects.
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Regardless of where one stands on the relative importance of the role of

consent over other situational factors, it is fair to say that since consent can sig-

nificantly impact all HRI interactions, it must be explicitly accounted for in our

HRI experiments. One direction might be to redo some of the more significant

past experiments to include some explicit consent measures and possibly even using

consent/no-consent as an independent variable in the design. So, the robot-approach

results could be redesigned by taking the presupposed consent structure of the con-

text in which they are performed into account. On the one hand this might sound

like bad news, but we think it is not so and will actually substantially strengthen

those results that survive this repetition, and provide new opportunities for those

results that show some variation when corrected for consent. Importantly, such a

revisiting of past experiments might be necessary in order to be able to understand

what those interaction design results actually mean when those interaction designs

are translated into real world applications deployed in social spaces requiring consent-

awareness. We might need to go back to the drawing board on some experiments

to get additional results for cases not previously considered or conflated due to the

lack of a consent dimension in the experimental design.

8.6 Conclusion

In this chapter, we have presented consent as a crucial area for HRI research. Consent

often defines human-robot interactions for their entire duration, rather than being

just a precondition that is established or refused beforehand. We have outlined levels

of consent to show how subtle social cues can change the nature of what social robots

roles are and what actions they can do. From several exemplary scenarios, it is clear

that the HRI community can extend insights of existing research into richer areas of

human-robot interface. Our brief architectural considerations suggest how robotic

systems, designed with architectures incorporating rules-based and context-aware

elements, could best recognize how consent is sought, maintained, and respected.

As robots enter into the rough terrain of social spaces, consent will unavoid-
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ably take on cultural and political valences. Even seen as tools, robots will assume

representations of broader values, for better or worse. Societal critiques have stressed

the harm of gendered norms of silence and disregard for consent, and steering clear

of consent still implicates robotic systems in how they are embodied. This reflects

why for broader discussions of AI ethics, including law and policy, HRI research can

be a strong voice for otherwise neglected risks and opportunities posed by embod-

ied automation. It can be at the forefront of guiding how human society can more

carefully consent to the technologies meant to serve it.
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Part III

Sense-Breaking
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Chapter 9

Human Problem Solving

In Part I, we focused on sense-making and the role of logical reasoning over different

types of knowledge (esp. social norms) as critical to understanding language and

perceiving affordances. In Part II, we took a deep dive into social normative knowl-

edge and explored its cognitive, computational and societal aspects. Both Parts I

and II established the importance of knowledge-based assumptions to guide intel-

ligence. These bodies of knowledge and the accompanying reasoning mechanisms

help us handle ambiguity and uncertainty effectively and will help future AI systems

in making sense of the world. However, our knowledge and assumptions about the

world can limit us. In Part III, we explore the realm of creativity, when assumptions

must be lifted, and sense-making turns into sense-breaking.

This chapter explores human real world creative problem solving and synthe-

sizes a disparate body of literature in Cognitive Psychology and Cognitive Neuro-

science. The chapter proposes a model of creative problem solving, which is then

computationalized in subsequent chapters.

9.1 Introduction

In the Apollo 13 space mission, astronauts together with ground control had to

overcome several challenges to bring the team safely back to Earth [LK06]. One of

these challenges was controlling carbon dioxide levels onboard the space craft: “For

263



two days straight [they] had worked on how to jury-rig the Odyssey’s canisters to the

Aquarius’s life support system. Now, using materials known to be available onboard

the spacecraft – a sock, a plastic bag, the cover of a flight manual, lots of duct

tape, and so on – the crew assembled a strange contraption and taped it into place.

Carbon dioxide levels immediately began to fall into the safe range” [Cas05, Tea70].

The success of Apollo 13’s recovery from failure is often cited as a glow-

ing example of human resourcefulness and inventiveness alongside more well-known

inventions and innovations over the course of human history. However, this sort of

inventive capability is not restricted to a few creative geniuses, but an ability present

in all of us, and exemplified in the following mundane example. Consider a situation

when your only suit is covered in lint and you do not own a lint remover. You see a

roll of duct tape, and being resourceful you reason that it might be a good substitute.

You then solve the problem of lint removal by peeling a full turn’s worth of tape and

re-attaching it backwards onto the roll to expose the sticky side all around the roll.

By rolling it over your suit, you can now pick up all the lint.

In both these examples (historic as well as everyday), we see evidence for

our innate ability to problem-solve in the real world. Solving real world problems

in real time given constraints posed by one’s environment is crucial for survival.

At the core of this skill is our mental capability to get out of “sticky situations”

or impasses, i.e., difficulties that appear unexpectedly as impassable roadblocks to

solving the problem at hand. But, what are the cognitive processes that enable a

problem solver to overcome such impasses and arrive at a solution, or at least a set

of promising next steps?

A central aspect of this type of real world problem solving is the role played

by the solver’s surrounding environment during the problem-solving process. Is it

possible that interaction with one’s environment can facilitate creative thinking?

The answer to this question seems somewhat obvious when one considers the most

famous anecdotal account of creative problem solving, namely that of Archimedes

of Syracuse. During a bath, he found a novel way to check if the King’s crown

contained non-gold impurities. The story has traditionally been associated with the

264



so-called “Eureka moment”, the sudden affective experience when a solution to a

particularly thorny problem emerges. In this chapter, I want to temporarily turn

our attention away from the specific “aha!” experience itself and take particular note

that Archimedes made this discovery, not with his eyes closed at a desk, but in a

real-world context of a bath.1 The bath was not only a passive, relaxing environment

for Archimedes, but also a specific source of inspiration. Indeed it was his noticing

the displacement of water that gave him a specific methodology for measuring the

purity of the crown; by comparing how much water a solid gold bar of the same weight

would displace as compared with the crown. This sort of continuous environmental

interaction was present when the Apollo 13 engineers discovered their life-saving

solution, and when you solved the suit-lint-removal problem with duct tape.

The neural mechanisms underlying problem-solving have been extensively

studied in the literature, and there is general agreement about the key functional

networks and nodes involved in various stages of problem-solving. In addition, there

has been a great deal of work in studying the neural basis for creativity and insight

problem solving, which is associated with the sudden emergence of solutions. How-

ever, in the context of problem-solving, creativity and insight have been researched

as largely an internal process without much interaction with and influence from

the external environment [Weg12, Abr13, KB14]2. Thus, there are open questions of

what role the environment plays during real world problem-solving (RWPS) and how

the brain enables the assimilation of novel items during these external interactions.

In this chapter, I synthesize the literature on problem-solving, creativity and

insight, and particularly focus on how the environment can inform RWPS. I ex-

plore three environmentally-informed mechanisms that could play a critical role: (1)

partial-cue driven context-shifting, (2) heuristic prototyping and learning novel asso-

ciations, and (3) learning novel physical inferences. I begin first with some intuitions
1My intention is not to ignore the benefits of a concentrated internal thought process which

likely occurred as well, but merely to acknowledge the possibility that the environment might have
also helped.

2The research in insight does extensively use “hints” which are, arguably, a form of external
influence. But these hints are highly targeted and might not be available in this explicit form when
solving problems in the real world.
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about real world problem solving that might help ground this discussion and provid-

ing some key distinctions from more traditional problem solving research. Then, I

turn to a review of the relevant literature on problem-solving, creativity, and insight,

before discussing the three above-mentioned environmentally-driven mechanisms. I

conclude with a potential new model and map out its hypothesized neural basis.

9.2 Problem Solving, Creativity and Insight

9.2.1 What is Real World Problem-Solving?

Archimedes was embodied in the real world when he found his solution. In fact, the

real world helped him solve the problem. Whether or not these sorts of historic ac-

counts of creative inspiration are accurate3, they do correlate with some of our own

key intuitions about how problem solving occurs “in the wild.” Real world problem

solving (RWPS) is different from that which occurs in a classroom or in a labora-

tory during an experiment. It is often dynamic and discontinuous, accompanied by

many starts and stops. Solvers are never working on just one problem. Instead, they

are simultaneously juggling several problems of varying difficulties and alternating

their attention between them. Real world problems are typically ill-defined, and

even when they are well-defined, often have open-ended solutions. Coupled with

that is the added aspect of uncertainty associated with the solver’s problem solving

strategies. As introduced earlier, an important dimension of RWPS is the continuous

interaction between the solver and their environment. During these interactions, the

solver might be inspired or arrive at an “aha!” moment. However, more often than

not, the solver experiences dozens of minor discovery events - “hmmm, interesting...”

or “wait, what?...” moments. Like discovery events, there’s typically never one sin-

gular impasse or distraction event. The solver must iterate through the problem

solving process experiencing and managing these sorts of intervening events (includ-

ing impasses and discoveries). In summary, RWPS is quite messy and involves a
3The accuracy of these accounts has been placed in doubt. They often are recounted years later,

with inaccuracies, and embellished for dramatic effect.
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tight interplay between problem solving, creativity and insight. Next, I explore each

of these processes in more detail and explicate a possible role of memory, attention,

conflict management and perception.

9.2.2 Analytical Problem-Solving

In psychology and neuroscience, problem-solving broadly refers to the inferential

steps taken by an agent4 leading from a given state of affairs to a desired goal state

[BB09]. The agent does not immediately know how this goal can be reached and must

perform some mental operations (i.e., thinking) to determine a solution [Dun45].

The problem solving literature divides problems based on clarity (well-defined

vs ill-defined) or on the underlying cognitive processes (analytical, memory retrieval,

and insight) [SRE+17]. While memory retrieval is an important process, I consider

it as a sub-process to problem solving more generally. I first focus on the analyt-

ical problem-solving process, which typically involves problem-representation and

encoding, and the process of forming and executing a solution plan [Rob16].

9.2.2.1 Problem Definition and Representation

An important initial phase of problem-solving involves defining the problem and

forming a representation in the working memory. During this phase, components of

the prefrontal cortex (PFC), default mode network (DMN) and the dorsal anterior

cingulate cortex (dACC) have been found to be activated. If the problem is familiar

and well-structured, top-down executive control mechanisms are engaged and the left

prefrontal cortex including the frontopolar, dorso-lateral (dlPFC) and ventro-lateral

(vlPFC) are activated [BB09]. The DMN along with the various structures in the

medial temporal lobe (MTL) including the hippocampus (HF), parahippocampal

cortex, perirhinal and entorhinal cortices are also believed to have limited involve-

ment, especially in episodic memory retrieval activities during this phase [BBSS16].

The problem representation requires encoding problem information for which certain
4I use the term “agent” to refer to the problem-solver. The term agent is more general than

“creature” or “person” or “you" and is intentionally selected to broadly reference humans, animals
and artificial agents. I also selectively use the term “solver.”
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visual and parietal areas are also involved, although the extent of their involvement

is less clear [ASF14, AF14].

Working Memory An important aspect of problem representation is the engage-

ment and use of working memory (WM). The WM allows for the maintenance of

relevant problem information and description in the mind [GN12]. Research has

shown that WM tasks consistently recruit the dlPFC and left inferior frontal cortex

(IC) for encoding and manipulating information; dACC for error detection and per-

formance adjustment; and vlPFC and the anterior insula (AI) for retrieving, selecting

information, and inhibitory control [FZZ+16, CW14].

Representation While we mostly believe we know which brain regions are func-

tionally influential in problem definition, less is known about how exactly events

are represented within these regions. One theory for how events are represented

in the PFC is the structured event complex theory (SEC), in which components of

the event knowledge are represented by increasingly higher-order convergence zones

localized within the PFC, akin to the convergence zones (from posterior to anterior)

that integrate sensory information in the brain [BKG09]. Under this theory, different

zones in the PFC (left vs right, anterior vs posterior, lateral vs medial and dorsal vs

ventral) represent different aspects of the information contained in the events (e.g.,

number of events to be integrated together, the complexity of the event, whether

planning and action is needed). Other studies have also suggested the central ex-

ecutive network’s (CEN’s) role in tasks requiring cognitive flexibility, and functions

to switch thinking modes, levels of abstraction of thought and consider multiple

concepts simultaneously [MFE+00].

Thus, when the problem is well-structured, problem representation is largely

an executive control activity coordinated by the PFC in which problem information

from long-term memory populates WM in a potentially structured representation.

Once the problem is defined and encoded, planning and execution of a solution can

begin.

268



9.2.2.2 Planning

The central executive network (CEN), particularly the PFC, is largely involved in

plan formation and in plan execution. Planning is the process of generating a strategy

to advance from the current state to a goal state. This in turn involves retrieving a

suitable solution strategy from memory and then coordinating its execution.

Plan Formation The dlPFC supports sequential planning and plan formation,

which includes the generation of hypotheses and construction of plan steps [BB09].

Interestingly, the vlPFC and the angular gyrus (AG), implicated in a variety of

functions including memory retrieval, are also involved in plan formation [ASF14].

Indeed, the AG together with the regions in the MTL (including the HF) and several

other regions form what is known as the “core” network. The core network is be-

lieved to be activated when recalling past experiences, imagining fictitious and future

events and navigating large-scale spaces [SHM10], all key functions for generating

plan hypotheses. A recent study suggests that the AG is critical to both episodic

simulation, representation and episodic memory [TMS17]. One possibility for how

plans are formulated could involve a dynamic process of retrieving a promising strat-

egy from memory. Research has shown significant interaction between striatal and

frontal regions [SB12, HBB+15]. The striatum is believed to play a key role in

declarative memory retrieval, and specifically helping retrieve optimal (or previously

rewarded) memories [SB12]. Relevant to planning and plan formation, Scimeca &

Badre have suggested that the striatum plays two important roles: (1) in mapping ac-

quired value/utility to action selection, and thereby helping plan formation, and (2)

modulation and re-encoding of actions and other plan parameters. Different types of

problems require different sets of specialized knowledge. For example, the knowledge

needed to solve mathematical problems might be quite different (albeit overlapping)

from the knowledge needed to select appropriate tools in the environment.

Thus far, I have discussed planning and problem representation as being

domain-independent, which has allowed me to outline key areas of the PFC, MTL,

and other regions relevant to all problem-solving. However, some types of problems
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require domain-specific knowledge for which other regions might need to be recruited.

For example, when planning for tool-use, the superior parietal lobe (SPL), supra-

marginal gyrus (SMG), anterior inferior parietal lobe (AIPL), and certain portions of

the temporal and occipital lobe involved in visual and spatial integration have been

found to be recruited [BWSH14]. It is believed that domain-specific information

stored in these regions is recovered and used for planning.

Plan Execution Once a solution plan has been recruited from memory and suit-

ably tuned for the problem on hand, the left-rostral PFC, caudate nucleus (CN) and

bilateral posterior parietal cortices (PPC) are responsible for translating the plan

into executable form [SLOA12]. The PPC stores and maintains a “mental template”

of the executable form. Hemispherical division of labor is particularly relevant in

planning. It was shown that when planning to solve a Tower of Hanoi (block mov-

ing) problem, the right PFC is involved in plan construction whereas the left PFC

is involved in controlling processes necessary to supervise the execution of the plan

[NG15]. On a separate note and not the focus of this chapter, plan execution and

problem-solving can require the recruitment of affective and motivational processing

in order to supply the agent with the resolve to solve problems, and the vmPFC has

been found to be involved in coordinating this process [BB09].

9.2.3 Creativity

During the gestalt movement in the 1930s, Maier noted that “most instances of “real”

problem solving involves creative thinking.” [Mai30]. Maier performed several exper-

iments to study mental fixation and insight problem solving. This close tie between

insight and creativity continues to be a recurring theme, one that will be central

to the current discussion. If creativity and insight are linked to RWPS as noted

by Maier, then it is reasonable to turn to the creativity and insight literature for

understanding the role played by the environment. A large portion of the creativ-

ity literature has focused on viewing creativity as an internal process, one in which

the solver’s attention is directed inwards, and towards internal stimuli, to facilitate
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the generation of novel ideas and associations in memory [BBSS16]. Focusing on

imagination, a number of researchers have looked at blinking, eye fixation, closing

eyes and looking “nowhere” behavior and suggested that there is a shift of attention

from external to internal stimuli during creative problem solving [SB16]. The idea

is that shutting down external stimuli reduces cognitive load and focuses attention

internally. Other experiments studying sleep behavior have also noted the beneficial

role of internal stimuli in problem solving. The notion of ideas popping into one’s

consciousness, suddenly, during a shower is highly intuitive for many and researchers

have attempted to study this phenomena through the lens of incubation, and un-

conscious thought that is internally-driven. There have been several theories and

counter-theories proposed to account specifically for the cognitive processes under-

lying incubation [RD14, Gil16], but none of these theories specifically address the

role of the external environment.

The neuroscience of creativity has also been extensively studied and I do not

focus on an exhaustive literature review in this chapter (a nice review can be found

in [Saw11]). From a problem-solving perspective, it has been found that unlike well-

structured problems, ill-structured problems activate the right dlPFC. Most of the

past work on creativity and creative problem-solving has focused on exploring mem-

ory structures and performing internally-directed searches. Creative idea generation

has primarily been viewed as internally directed attention [BJB+16, JBN12] and a

primary mechanism involved is divergent thinking, which is the ability to produce

a variety of responses in a given situation [Gui62]. Divergent thinking is generally

thought to involve interactions between the DMN, CEN and the salience network

[YR14, HNH+16]. One psychological model of creative cognition is the Geneplore

model that considers two major phases of generation (memory retrieval and men-

tal synthesis) and exploration (conceptual interpretation and functional inference)

[FWS92, BPP+15]. It has been suggested that the associative mode of processing to

generate new creative association is supported by the DMN, which includes the me-

dial PFC, posterior cingulate cortex (PCC), tempororparietal juntion (TPJ), MTL

and IPC [BBW+14, BBSS16].
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That said, the creativity literature is not completely devoid of acknowledging

the role of the environment. In fact, it is quite the opposite. Researchers have looked

closely at the role played by externally provided “hints” from the time of the early

gestalt psychologists and through to present day studies (Ollinger 2016). In addition

to studying how hints can help problem solving, researchers have also looked at how

directed action can influence subsequent problem solving – e.g., swinging arms prior

to solving the two-string puzzle, which requires swinging the string [TL09]. There

have also been numerous studies looking at how certain external perceptual cues

are correlated with creativity measures. Vohs et al. suggested that untidiness in the

environment and the increased number of potential distractions helps with creativity

[VRR13]. Certain colors such as blue have been shown to help with creativity and

attention to detail [MZ09]. Even environmental illumination, or lack thereof, have

been shown to promote creativity [SW13]. However, it is important to note that

while these and the substantial body of similar literature show the relationship of

the environment to creative problem solving, they do not specifically account for the

cognitive processes underlying the RWPS when external stimuli are received.

9.2.4 Insight Problem Solving

Analytical problem solving is believed to involve deliberate and conscious processing

that advances step by step, allowing solvers to be able to explain exactly how they

solved it. Inability to solve these problems is often associated with lack of required

prior knowledge, which if provided, immediately makes the solution tractable. In-

sight, on the other hand, is believed to involve a “sudden” and unexpected emergence

of an obvious solution or strategy sometimes accompanied by an affective “aha!” ex-

perience. Solvers find it difficult to consciously explain how they generated a solution

in a sequential manner. That said, research has shown that having an “aha!” moment

is neither necessary nor sufficient to insight and vice versa [DWÖ16]. Generally, it

is believed that insight solvers acquire a full and deep understanding of the problem

when they have solved it [CM11]. There has been an active debate in the problem

solving community about whether insight is something special. Some have argued
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that it is not, and that there are no special or spontaneous processes, but simply a

good old-fashioned search of a large problem space [KS90, MOC01, AW06, Fle08].

Others have argued that insight is special and suggested that it is likely a different

process [Dun45, Met86, KB14]. This debate led to two theories for insight problem

solving. MacGregor et al., proposed the Criterion for Satisfactory Progress Theory

(CSPT), which is based on Newell and Simon’s original notion of problem solving

as being a heuristic search through the problem space [MOC01]. The key aspect of

CSPT is that the solver is continually monitoring their progress with some set of

criteria. Impasses arise when there is a criterion failure, at which point the solver

tries non-maximal but promising states. The representational change theory (RCT)

proposed by Ohlsson et al., on the other hand, suggests that impasses occur when

the goal state is not reachable from an initial problem representation (which may

have been generated through unconscious spreading activation) [Ohl92]. In order

to overcome an impasse, the solver needs to restructure the problem representation,

which they can do by (1) elaboration (noticing new features of a problem), (2) re-

encoding (fixing mistaken or incomplete representations of the problem, and by (3)

changing constraints. Changing constraints is believed to involve two sub-processes

of constraint relaxation and chunk-decomposition.

The current position is that these two theories do not compete with each

other, but instead complement each other by addressing different stages of problem

solving: pre- and post-impasse. Along these lines, Ollinger et al. proposed an

extended RCT (eRCT) in which revising the search space and using heuristics was

suggested as being a dynamic and iterative or recursive process that involves repeated

instances of search, impasse and representational change [ÖJK14, ÖFBS17]. Under

this theory, a solver first forms a problem representation and begins searching for

solutions, presumably using analytical problem solving processes as described earlier.

When a solution cannot be found, the solver encounters an impasse, at which point

the solver must restructure or change the problem representation and once again

search for a solution. The model combines both analytical problem solving (through

heuristic searches, hill climbing and progress monitoring), and creative mechanisms
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of constraint relaxation and chunk decomposition to enable restructuring.

Ollinger’s model appears to comprehensively account for both analytical and

insight problem solving and, therefore, could be a strong candidate to model RWPS.

However, while compelling, it is nevertheless an insufficient model of RWPS for many

reasons, of which two are particularly significant for the current chapter. First,

the model does not explicitly address mechanisms by which external stimuli might

be assimilated. Second, the model is not sufficiently flexible to account for other

events (beyond impasse) occurring during problem solving, such as distraction, mind-

wandering and the like.

So, where does this leave us? I have shown the interplay between problem

solving, creativity and insight. In particular, using Ollinger’s proposal, I have sug-

gested (maybe not quite explicitly up until now) that RWPS involves some degree of

analytical problem solving as well as the post-impasse more creative modes of prob-

lem restructuring. I have also suggested that this model might need to be extended

for RWPS along two dimensions. First, events such as impasses might just be an

instance of a larger class of events that intervene during problem solving. Thus,

there needs to be an accounting of the cognitive mechanisms that are potentially

influenced by impasses and these other intervening events. It is possible that these

sorts of events are crucial and trigger a switch in attentional focus, which in turn

facilitates switching between different problem solving modes. Second, we need to

consider when and how externally-triggered stimuli from the solver’s environment

can influence the problem solving process. I detail three different mechanisms by

which external knowledge might influence problem solving. I address each of these

ideas in more detail in the next two sections.
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9.3 Event-Triggered Mode Switching During Problem-

Solving

9.3.1 Impasse

When solving certain types of problems, the agent might encounter an impasse,

i.e., some block in its ability to solve the problem [SRE+17]. The impasse may arise

because the problem may have been ill-defined to begin with causing incomplete and

unduly constrained representations to have been formed. Alternatively, impasses

can occur when suitable solution strategies cannot be retrieved from memory or

fail on execution. In certain instances, the solution strategies may not exist and

may need to be generated from scratch. Regardless of the reason, an impasse is

an interruption in the problem solving process; one that was running conflict-free

up until the point when a seemingly unresolvable issue or an error in the predicted

solution path was encountered. Seen as a conflict encountered in the problem-solving

process it activates the anterior cingulate cortex (ACC). It is believed that the ACC

not only helps detect the conflict, but also switches modes from one of “exploitation”

(planning) to “exploration” (search) [QRP08, THPS12], and monitors progress during

resolution [CM11]. Some mode switching duties are also found to be shared with

the AI (the ACC’s partner in the salience network), however, it is unclear exactly

the extent of this function-sharing.

Even though it is debatable whether impasses are a necessary component

of insight, they are still important as they provide a starting point for creativity

[SRE+17]. Indeed, it is possible that around the moment of impasse, the AI and

ACC together, as part of the salience network play a crucial role in switching thought

modes from analytical planning mode to creative search and discovery mode. In the

latter mode, various creative mechanisms might be activated allowing for a solution

plan to emerge. Sowden et al. and many others have suggested that the salience

network is potentially a candidate neurobiological mechanism for shifting between

thinking processes, more generally [SPG15]. When discussing various dual-process
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models as they relate to creative cognition, Sowden et al. have even noted that the

ACC activation could be a useful marker to identify shifting as participants work

creative problems.

9.3.2 Defocused Attention

As noted earlier, in the presence of an impasse there is a shift from an exploitative

(analytical) thinking mode to an exploratory (creative) thinking mode. This shift

impacts several networks including, for example, the attention network. It is be-

lieved attention can switch between a focused mode and a defocused mode. Focused

attention facilitates analytic thought by constraining activation such that items are

considered in a compact form that is amenable to complex mental operations. In the

defocused mode, agents expand their attention allowing new associations to be con-

sidered. Sowden et al. (2015) note that the mechanism responsible for adjustments

in cognitive control may be linked to the mechanisms responsible for attentional

focus. The generally agreed position is that during generative and creative think-

ing, unconscious cognitive processes activated through defocused attention are more

prevalent, whereas during analytical thinking, controlled cognition activated by fo-

cused attention becomes more prevalent [SPG15, Kau11].

Defocused attention allows agents to not only process different aspects of a

situation, but to also activate additional neural structures in long term memory and

find new associations [YR14, Men76]. It is believed that cognitive material attended

to and cued by positive affective state results in defocused attention, allowing for

more complex cognitive contexts and therefore a greater range of interpretation and

integration of information [IDN87]. High attentional levels are commonly considered

a typical feature of highly creative subjects [SRE+17].

9.4 Role of the Environment

In much of the past work the focus has been on treating creativity as largely an in-

ternal process engaging the DMN to assist in making novel connections in memory.
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The suggestion has been that the “individual needs to suppress external stimuli and

concentrate on the inner creative process during idea generation” [HNH+16]. These

ideas can then function as seeds for testing and problem-solving. While true of many

creative acts, this characterization does not capture how creative ideas arise in the

solutions to many real-world creative problems. In these types of problems, the agent

is functioning and interacting with its environment before, during and after problem-

solving. It is natural then to expect that stimuli from the environment might play

a role in problem-solving. More specifically, it can be expected that through pas-

sive and active involvement with the environment, the agent is (1) able to trigger

an unrelated, but potentially useful memory relevant for problem-solving, (2) make

novel connections between two events in memory with the environmental cue serving

as the missing link, and (3) incorporate completely novel information from events

occuring in the environment directly into the problem-solving process. I explore po-

tential neural mechanisms for these three types of environmentally informed creative

cognition, which I hypothesize are enabled by defocused attention.

9.4.1 Partial Cues trigger Relevant Memories through Context-

Shifting

I have previously discussed the interaction between the MTL and PFC in help-

ing select task-relevant and critical memories for problem-solving. It is well-known

that pattern completion is an important function of the MTL and one that enables

memory retrieval. Complementary Learning Systems Theory (CLS) and its recently

updated version suggest that the MTL and related structures support initial storage

as well as retrieval of item and context-specific information [KHM16]. According

to CLS theory, the dentate gyrus (DG) and the CA3 regions of the hippocampal

formation (HF) are critical to selecting neural activity patterns that correspond to

particular experiences [KHM16]. These patterns might be distinct even if experiences

are similar and are stabilized through increases in connection strengths between the

DG and CA3. Crucially, because of the connection strengths, reactivation of part

of a pattern can activate the rest of it (i.e., pattern completion). [KHM16] have
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further noted that if consistent with existing knowledge, these new experiences can

be quickly replayed and interleaved into structured representations that form part

of the semantic memory.

Cues in the environment provided by these experiences hold partial informa-

tion about past stimuli or events and this partial information converges in the MTL.

CLS accounts for how these cues might serve to reactivate partial patterns, thereby

triggering pattern completion. When attention is defocused I hypothesize that (1)

previously unnoticed partial cues are considered, and (2) previously noticed partial

cues are decomposed to produce previously unnoticed sub-cues, which in turn are

considered. Zabelina et al. (2016) have shown that real-world creativity and creative

achievement is associated with “leaky attention,” i.e., attention that allows for irrele-

vant information to be noticed. In two experiments they systematically explored the

relationship between two notions of creativity - divergent thinking and real-world

creative achievement - and the use of attention. They found that attentional use is

associated in different ways for each of the two notions of creativity. While divergent

thinking was associated with flexible attention, it does not appear to be leaky. In-

stead, selective focus and inhibition components of attention were likely facilitating

successful performance on divergent thinking tasks. On the other hand, real-world

creative achievement was linked to leaky attention. RWPS involves elements of both

divergent thinking and of real-world creative achievement, thus I would expect some

amount of attentional leaks to be part of the problem solving process.

Thus, it might be the case that a new set of cues or sub-cues “leak” in and

activate memories that may not have been previously considered. These cues serve

to reactivate a diverse set of patterns that then enable accessing a wide range of

memories. Some of these memories are extra-contextual, in that they consider the

newly noticed cues in several contexts. For example, when unable to find a screw-

driver, we might consider using a coin. It is possible that defocused attention allows

us to consider the coin’s edge as being a potentially relevant cue that triggers uses

for the thin edge outside of its current context in a coin. The new cues (or con-

texts) may allow new associations to emerge with cues stored in memory, which can
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occur during incubation. Objects and contexts are integrated, in memory, automat-

ically into a blended representation and changing contexts disrupts this recognition

[Hay07, Gab16]. Cue-triggered context shifting allows an agent to break apart a

memory representation, which can then facilitate problem-solving in new ways.

9.4.2 Heuristic Prototyping facilitates novel associations

It has long been the case that many scientific innovations have been inspired by

events in nature and the surrounding environment. As noted earlier, Archimedes

realized the relationship between the volume of an irregularly shaped object and

the volume of water it displaced. This is an example of heuristic prototyping where

the problem-solver notices an event in the environment, which then triggers the

automatic activation of a heuristic prototype and the formation of novel associations

(between the function of the prototype and the problem) which they can then use

to solve the problem [LLQ+13]. Although still in its relative infancy, there has

been some recent research into the neural basis for heuristic prototyping. Heuristic

prototype has generally been defined as an enlightening prototype event with a

similar element to the current problem and is often composed of a feature and a

function [HCL+13]. For example, in designing a faster and more efficient submarine

hull, a heuristic prototype might be a shark’s skin, while an unrelated prototype

might be a fisheye camera [DHW+13].

Research has shown that activating the feature function of the right heuristic

prototype and linking it by way of semantic similarity to the required function of

the problem was the key mechanism people used to solve several scientific insight

problems [YDL+16]. A key region activated during heuristic prototyping is the

dlPFC and it is believed to be generally responsible for encoding the events into

memory and may play an important role in selecting and retrieving the matched

unsolved technical problem from memory [DHW+13]. It is also believed that the

precuneus plays a role in automatic retrieval of heuristic information allowing the

heuristic prototype and the problem to combine [LLQ+13]. In addition to semantic

processing, certain aspects of visual imagery have also been implicated in heuristic
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prototyping leading to the suggestion of the involvement of Brodmann’s area BA 19

in the occipital cortex.

There is some degree of overlap between the notions of heuristic prototyp-

ing and analogical transfer (the mapping of relations from one domain to another).

Analogical transfer is believed to activate regions in the left medial fronto-parietal

system (dlPFC and the PPC) [BB09]. I suggest here that analogical reasoning is

largely an internally-guided process that is aided by heuristic prototyping which is

an externally-guided process. One possible way this could work is if heuristic proto-

typing mechanisms help locate the relevant memory with which to then subsequently

analogize.

9.4.3 Making Physical Inferences to Acquire Novel Information

The agent might also be able to learn novel facts about their environment through

passive observation as well as active experimentation. There has been some research

into the neural basis for causal reasoning [BB09, OB16], but beyond its generally dis-

tributed nature, we do not know too much more. Beyond abstract causal reasoning,

some studies looked into the cortical regions that are activated when people watch

and predict physical events unfolding in real-time and in the real-world [FMTK16].

It was found that certain regions were associated with representing types of physical

concepts, with the left intraparietal sulcus (IPS) and left middle frontal gyrus (MFG)

shown to play a role in attributing causality when viewing colliding objects [MJ13].

The parahippocampus (PHC) was associated with linking causal theory to observed

data and the TPJ was involved in visualizing movement of objects and actions in

space [MJ13].

9.5 Proposed Theory of Creative Problem Solving

I noted earlier that Ollinger’s model for insight problem solving, while serving as a

good candidate for RWPS, requires extension. In this section, I propose a candidate

model that includes some necessary extensions to Ollinger’s framework. I begin by
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laying out some preliminary notions that underlie the proposed model.

9.5.1 Dual Attentional Modes

I propose that the attention-switching mechanism described earlier is at the heart

of RWPS and enables two modes of operation: focused and defocused mode. In

the focused mode, the problem representation is more or less fixed, and problem

solving proceeds in a focused and goal directed manner through search, planning and

execution mechanisms. In the defocused mode, problem solving is not necessarily

goal directed, but attempts to generate ideas, driven by both internal and external

items.

At first glance, these modes might seem similar to convergent and diver-

gent thinking modes postulated by numerous others to account for creative problem

solving. Divergent thinking allows for the generation of new ideas and convergent

thinking allows for verification and selection of generated ideas. So, it might seem

that focused mode and convergent thinking are similar and likewise divergent and

defocused mode. They are, however, quite different. The modes relate less to idea

generation and verification, and more to the specific mechanisms that are operat-

ing with regard to a particular problem at a particular moment in time. Convergent

and divergent processes may be occurring during both defocused and focused modes.

Some degree of divergent processes may be used to search and identify specific solu-

tion strategies in focused mode. Also, there might be some degree of convergent idea

verification occuring in defocused mode as candidate items are evaluated for their fit

with the problem and goal. Thus, convergent and divergent thinking are two among

many mechanisms that are utilized in focused and defocused mode. Each of these

two modes has to do with degree of attention placed on a particular problem.

There have been numerous dual-process and dual-systems models of cogni-

tion proposed over the years. To address criticisms raised against these models and

to unify some of the terminology, Evans & Stanovich proposed a dual-process model

comprising Type 1 and Type 2 thought [ES13, SPG15]. Type 1 processes are those

that are believed to be autonomous and do not require working memory. Type 2
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processes, on the other hand, are believed to require working memory and are cogni-

tively decoupled to prevent real-world representations from becoming confused with

mental simulations [SPG15]. While acknowledging various other attributes that are

often used to describe dual process models (e.g., fast/slow, associative/rule-based,

automatic/controlled), Evans & Stanovich note that these attributes are merely fre-

quent correlates and not defining characteristics of Type 1 or Type 2 processes. The

proposed dual attentional modes share some similarities with the Evans & Stanovich

Type 1 and 2 models. Specifically, Type 2 processes might occur in focused atten-

tional mode in the proposed model as they typically involve the working memory

and certain amount of analytical thought and planning. Similarly, Type 1 processes

are likely engaged in defocused attentional mode as there are notions of associative

and generative thinking that might be facilitated when attention has been defocused.

The crucial difference between the proposed model and other dual-process models

is that the dividing line between focused and defocused attentional modes is the

degree of openness to internal and external stimuli (by various networks and func-

tional units in the brain) when problem solving. Many dual process models were

designed to classify the “type” of thinking process or a form of cognitive processing.

In some sense, the “processes” in dual process theories are characterized by the type

of mechanism of operation or the type of output they produced. Here, I instead

characterize and differentiate the modes of thinking by the receptivity of different

functional units in the brain to input during problem solving.

This, however, raises a different question of the relationship between these

attentional modes and conscious versus unconscious thinking. It is clear that both

the conscious and unconscious are involved in problem solving, as well as in RWPS.

Here, I claim that a problem being handled is, at any given point in time, in either a

focused mode or in a defocused mode. When in the focused mode, problem solving

primarily proceeds in a manner that is available for conscious deliberation. More

specifically, problem space elements and representations are tightly managed and

plans and strategies are available in the working memory and consciously accessible.

There are, however, secondary unconscious operations in the focused modes that
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includes targeted memory retrieval and heuristic-based searches. In the defocused

mode, the problem is primarily managed in an unconscious way. The problem space

elements are broken apart and loosely managed by various mechanisms that do not

allow for conscious deliberation. That said, it is possible that some problem param-

eters remain accessible. For example, it is possible that certain goal information is

still maintained consciously. It is also possible that indexes to all the problems being

considered by the solver are maintained and available to conscious awareness.

9.5.2 RWPS Model

Returning to Ollinger’s model for insight problem solving, it now becomes readily

apparent how this model can be modified to incorporate environmental effects as well

as generalizing the notion of intervening events beyond that of impasses. I propose a

theory for RWPS that begins with the standard analytical problem-solving process

(See Figures 9.1 and 9.2).

Figure 9.1: Summary of neural activations during focused problem-solving (left) and
defocused problem-solving (right). During defocused problem-solving, the salience
network (insula and ACC) coordinates the switching of several networks into a de-
focused attention mode that permits the reception of a more varied set of stimuli
and interpretations via both the internally-guided networks (default mode network
DMN) and externally guided networks (Attention). PFC: prefrontal cortex, ACC:
anterior cingulate cortex, PCC: posterior cingulate cortex, IPC: inferior parietal cor-
tex, PPC: posterior parietal cortex, IPS: intra-parietal sulcus, TPJ: temporoparietal
junction, MTL: medial temporal lobe, FEF: frontal eye field.

Focused Problem Solving Mode Initially, both prior knowledge and perceptual

entities help guide the creation of problem representations in working memory. Prior
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Figure 9.2: Proposed Model for Real World Problem Solving (RWPS). The corre-
sponding neural correlates are shown in italics. During problem-solving, an initial
problem representation is formed based on prior knowledge and available perceptual
information. The problem-solving then proceeds in a focused, goal-directed mode
until the goal is achieved or a defocusing event (e.g., impasse or distraction) oc-
curs. During focused mode operation, the solver interacts with the environment in
a directed manner, executing focused plans and allowing for predicted items to be
activated by the environment. When a defocusing event occurs, the problem-solving
then switches into a defocused mode until a focusing event (e.g., discovery) occurs.
In defocused mode, the solver performs actions unrelated to the problem (or is inac-
tive) and is receptive to a set of environmental triggers that activate novel aspects
using the three mechanisms discussed in this chapter. When a focusing event oc-
curs, the diffused problem elements cohere into a restructured representation and
problem-solving returns into a focused mode.

optimal or rewarding solution strategies are obtained from LTM and encoded in the

working memory as well. This process is largely analytical and the solver interacts

with their environment through focused plan or idea execution, targeted observation

of prescribed entities, and estimating prediction error of these known entities. More

specifically, when a problem is presented, the problem representations are activated

and populated into working memory in the PFC, possibly in structured represen-
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tations along convergence zones. The PFC along with the Striatum and the MTL

together attempt at retrieving an optimal or previously rewarded solution strategy

from long term memory. If successfully retrieved, the solution strategy is encoded

into the PPC as a mental template, which then guides relevant motor control regions

to execute the plan.

Defocusing Event-Triggered Mode Switching The search and solve strategy

then proceeds analytically until a “defocusing event” is encountered. The salience

network (AI and ACC) monitor for conflicts and attempt to detect any such events

in the problem-solving process. As long as no conflicts are detected, the salience

network focuses on recruiting networks to achieve goals and suppresses the DMN

[BBSS16]. If the plan execution or retrieval of the solution strategy fails, then a

defocusing event is detected and the salience network performs mode switching.

The salience network dynamically switches from the focused problem-solving mode

to a defocused problem-solving mode [Men15]. Ollinger’s current model does not

account for other defocusing events beyond an impasse, but it is not inconceivable

that there could be other such events triggered by external stimuli (e.g., distraction

or an affective event) or by internal stimuli (e.g., mind wandering).

Defocused Problem Solving Mode In defocused mode, the problem is operated

on by mechanisms that allow for the generation and testing of novel ideas. Several

large-scale brain networks are recruited to explore and generate new ideas. The

search for novel ideas is facilitated by generally defocused attention, which in turn

allows for creative idea generation from both internal as well as external sources.

The salience network switches operations from defocused event detection to focused

event or discovery detection, whereby for example, environmental events or ideas

that are deemed interesting can be detected. During this idea exploration phase,

internally, the DMN is no longer suppressed and attempts to generate new ideas

for problem-solving. It is known that the IPC is involved in the generation of new

ideas [BJF+14] and together with the PPC in coupling different information to-
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gether [SLOA12, Sim08]. Beaty et al. (2016) have proposed that even this internal

idea-generation process can be goal directed, thereby allowing for a closer working

relationship between the CEN and the DMN. They point to neuroimaging evidence

that supports the possibility that the executive control network (comprising the lat-

eral prefrontal and inferior parietal regions) can constrain and direct the DMN in its

process of generating ideas to meet task-specific goals via top down monitoring and

executive control [BBSS16]. The control network is believed to maintain an “internal

train of thought” by keeping the task goal activated, thereby allowing for strategic

and goal-congruent searches for ideas. Moreover, they suggest that the extent of

CEN involvement in the DMN idea-generation may depend on the extent to which

the creative task is constrained. In the RWPS setting, I would suspect that the inter-

nal search for creative solutions is not entirely unconstrained, even in the defocused

mode. Instead, the solver is working on a specified problem and thus, must main-

tain the problem-thread while searching for solutions. Moreover, self-generated ideas

must be evaluated against the problem parameters and thereby might need some top-

down processing. This would suggest that in such circumstances, we would expect

to see an increased involvement of the CEN in constraining the DMN.

On the external front, several mechanisms are operating in this defocused

mode. Of particular note are the dorsal attention network, composed of the vi-

sual cortex (V), IPS and the frontal eye field (FEF) along with the precuneus and

the caudate nucleus allow for partial cues to be considered, as was discussed in

Section 9.4.1. The MTL receives synthesized cue and contextual information and

populates the WM in the PFC with a potentially expanded set of information that

might be relevant for problem-solving. The precuneus, dlPFC and PPC together

trigger the activation and use of a heuristic prototype based on an event in the envi-

ronment. The caudate nucleus facilitates information routing between the PFC and

PPC and is involved in learning and skill acquisition.

Focusing Event-Triggered Mode Switching The problem’s life in this defo-

cused mode continues until a focusing event occurs, which could be triggered by
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either external (e.g., notification of impending deadline, discovery of a novel prop-

erty in the environment) or internal items (e.g., goal completion, discovery of novel

association or updated relevancy of a previously irrelevant item). As noted earlier,

an internal train of thought may be maintained that facilitates top-down evalua-

tion of ideas and tracking of these triggers [BBSS16]. The salience network switches

various networks back to the focused problem-solving mode, but not without the

potential for problem restructuring. As noted earlier, problem space elements are

maintained somewhat loosely in the defocused mode. Thus, upon a focusing event,

a set or subset of these elements cohere into a tight (restructured) representation

suitable for focused mode problem solving. The process then repeats itself until the

goal has been achieved.

9.5.3 Model Predictions

Single-Mode Operation The proposed RWPS model provides several interesting

hypotheses, which I discuss next. First, the model assumes that any given problem

being worked on is in one mode or another, but not both. Thus, the model predicts

that there cannot be focused plan execution on a problem that is in defocused mode.

The corollary prediction is that novel perceptual cues (as those discussed in Section

9.4) cannot help the solver when in focused mode. The corollary prediction, pre-

sumably has some support from the inattentional blindness literature. Inattentional

blindness is when perceptual cues are not noticed during a task (e.g., counting the

number of basketball passes between several people, but not noticing a gorilla in

the scene) [SC99]. It is possible that during focused problem solving, that external

and internally generated novel ideas are simply not considered for problem solving.

I am not claiming that these perceptual cues are always ignored, but that they are

not considered within the problem. Sometimes external cues (like distracting oc-

currences) can serve as defocusing events, but the model predicts that the actual

content of these cues are not themselves useful for solving the specific problem at

hand.

When comparing dual-process models Sowden et al. (2015) discuss shifting
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from one type of thinking to another and explore how this shift relates to creativity.

In this regard, they weigh the pros and cons of serial versus parallel shifts. In

dual-process models that suggest serial shifts, it is necessary to disengage one type

of thought prior to engaging the other or to shift along a continuum. Whereas

in models that suggest parallel shifts, each of the thinking types can operate in

parallel. Per this construction, the proposed RWPS model is serial, however, not

quite in the same sense. As noted earlier, the RWPS model is not a dual-process

model in the same sense as other dual process models. Instead, here, the thrust is on

when the brain is receptive or not receptive to certain kinds of internal and external

stimuli that can influence problem solving. Thus, while the modes may be serial

with respect to a certain problem, it does not preclude the possibility of serial and

parallel thinking processes that might be involved within these modes.

Event-driven Transitions The model requires an event (defocusing or focusing)

to transition from one mode to another. After all why else would a problem that is

successfully being resolved in the focused mode (toward completion) need to neces-

sarily be transferred to defocused mode? These events are interpreted as conflicts

in the brain and therefore the mode-switching is enabled by the saliency network

and the ACC. Thus, the model predicts that there can be no transition from one

mode to another without an event. This is a bit circular, as an event is really what

triggers the transition in the first place. But, here I am suggesting that an external

or internal cue triggered event is what drives the transition, and that transitions

cannot happen organically without such an event. In some sense, the argument is

that the transition is discontinuous, rather than a smooth one. Mind-wandering is

a good example of when we might drift into defocused mode, which I suggest is an

example of an internally driven event caused by an alternative thought that takes

attention away from the problem.

A model assumption underlying RWPS is that events such as impasses have

an effect similar to other events such as distraction or mind wandering. Thus, it is

crucial to be able to establish that there exists a class of such events and they have

288



a shared effect on RWPS, which is to switch attentional modes.

Focused Mode Completion The model also predicts that problems cannot be

solved (i.e., completed) within the defocused mode. A problem can be considered

solved when a goal is reached. However, if a goal is reached and a problem is

completed in the defocused mode, then there must have not been any converging

event or coherence of problem elements. While it is possible that the solver arbitrarily

arrived at the goal in a diffused problem space and without conscious awareness of

completing the task or even any converging event or problem recompiling, it appears

somewhat unlikely. It is true that there are many tasks that we complete without

actively thinking about it. We do not think about what foot to place in front of

another while walking, but this is not an instance of problem solving. Instead, this

is an instance of unconscious task completion.

Restructuring required The model predicts that a problem cannot return to

a focused mode without some amount of restructuring. That is, once defocused,

the problem is essentially never the same again. The problem elements begin inter-

acting with other internally and externally-generated items, which in turn become

absorbed into the problem representation. This prediction can potentially be tested

by establishing some preliminary knowledge, and then showing one group of sub-

jects the same knowledge as before, while showing the another group of subjects

different stimuli. If the model’s predictions hold, the problem representation will be

restructured in some way for both groups.

There are numerous other such predictions, which are beyond the scope of

this chapter. One of the biggest challenges then becomes evaluating the model to set

up suitable experiments aimed at testing the predictions and falsifying the theory,

which I address next.
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9.6 Experimental Challenges and Paradigms

One of challenges in evaluating the RWPS is that real world factors cannot realisti-

cally be accounted for and sufficiently controlled within a laboratory environment.

So, how can one controllably test the various predictions and model assumptions of

“real world” problem solving, especially given that by definition RWPS involves the

external environment and unconscious processing? At the expense of ecological valid-

ity, much of insight problem solving research has employed an experimental paradigm

that involves providing participants single instances of suitably difficult problems as

stimuli and observing various physiological, neurological and behavioral measures.

In addition, through verbal protocols, experimenters have been able to capture sub-

jective accounts and problem solving processes that are available to the participants’

conscious. These experiments have been made more sophisticated through the use

of timed-hints and/or distractions. One challenge with this paradigm has been the

selection of a suitable set of appropriately difficult problems. The classic insight

problems (e.g., Nine-dot, eight-coin) can be quite difficult, requiring complicated

problem solving processes, and also might not generalize to other problems or real

world problems. Some in the insight research community have moved in the di-

rection of verbal tasks (e.g., riddles, anagrams, matchstick rebus, remote associates

tasks, and compound remote associates tasks). Unfortunately, these puzzles, while

providing a great degree of controllability and repeatability, are even less realistic.

These problems are not entirely congruent with the kinds of problems that humans

are solving every day.

The other challenge with insight experiments is the selection of appropriate

performance and process tracking measures. Most commonly, insight researchers use

measures such as time to solution, probability of finding solution, and the like for per-

formance measures. For process tracking, verbal protocols, coded solution attempts,

and eye tracking are increasingly common. In neuroscientific studies of insight var-

ious neurological measures using functional magnetic resonance imaging (fMRI),

electroencephalography (EEGs), transcranial direct current stimulation (tDCS) and

290



transcranial magnetic stimulation (tMS) are popular and allow for spatially and

temporally localizing an insight event.

Thus, the challenge for RWPS is two-fold: (1) selection of stimuli (real world

problems) that are generalizable, and (2) selection of measures (or a set of measures)

that can capture key aspects of the problem solving process. Unfortunately, these

two challenges are somewhat at odds with each other. While fMRI and various

neuroscientific measures can capture the problem solving process in real time, it is

practically difficult to provide participants a realistic scenario while they are laying

flat on their back in an fMRI machine and allowed to move nothing more than a

finger. To begin addressing this conundrum, I suggest returning to object manip-

ulation problems (not all that different from those originally introduced by Maier

and Duncker nearly a century ago), but using modern computing and user-interface

technologies.

One pseudo-realistic approach is to generate challenging object manipula-

tion problems in Virtual Reality (VR). VR has been used to describe 3-D environ-

ment displays that allows participants to interact with artificially projected, but

experientially realistic scenarios. It has been suggested that virtual environments

(VE) invoke the same cognitive modules as real equivalent environmental experience

[For10]. Crucially, since VE’s can be scaled and designed as desired, they provide a

unique opportunity to study pseudo-RWPS. However, a VR-based research approach

has its limitations, one of which is that it is nearly impossible to track participant

progress through a virtual problem using popular neuroscientific measures such as

fMRI because of the limited mobility of connected participants.

Most of the studies cited in this chapter utilized an fMRI-based approach

in conjunction with a verbal or visual task involving problem-solving or creative

thinking. Very few, if any, studies involved the use physical manipulation, and those

physical manipulations were restricted to limited finger movements. Thus, another

pseudo-realistic approach is allowing subjects to teleoperate robotic arms and legs

from inside the fMRI machine. This paradigm has seen limited usage in psychol-

ogy and robotics, in studies focused on Human-Robot interaction [LJGDR15]. It
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could be an invaluable tool in studying real-time dynamic problem-solving through

the control of a robotic arm. In this paradigm a problem solving task involving

physical manipulation is presented to the subject via the cameras of a robot. The

subject (in an fMRI) can push buttons to operate the robot and interact with its

environment. While the subjects are not themselves moving, they can still manipu-

late objects in the real world. What makes this paradigm all the more interesting is

that the subject’s manipulation-capabilities can be systematically controlled. Thus,

for a particular problem, different robotic perceptual and manipulation capabilities

can be exposed, allowing researchers to study solver-problem dynamics in a new

way. For example, even simple manipulation problems (e.g., re-arranging and stack-

ing blocks on a table) can be turned into challenging problems when the robotic

movements are restricted. Here, the problem space restrictions are imposed not nec-

essarily on the underlying problem, but on the solver’s own capabilities. Problems

of this nature, given their simple structure, may enable studying everyday practi-

cal creativity without the burden of devising complex creative puzzles. Crucial to

note, both these pseudo-realistic paradigms proposed demonstrate a tight interplay

between the solver’s own capabilities and their environment.

9.7 Conclusion

While the neural basis for problem-solving, creativity and insight have been studied

extensively in the past, there is still a lack of understanding of the role of the envi-

ronment in informing the problem-solving process. Current research has primarily

focused on internally-guided mental processes for idea generation and evaluation.

However, the type of real world problem-solving (RWPS) that is often considered

a hallmark of human intelligence has involved both a dynamic interaction with the

environment and the ability to handle intervening and interrupting events. In this

chapter, I have attempted to synthesize the literature into a unified theory of RWPS,

with a specific focus on ways in which the environment can help problem-solve and

the key neural networks involved in processing and utilizing relevant and useful en-
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vironmental information. Understanding the neural basis for RWPS will allow us

to be better situated to solve difficult problems. Moreover, for researchers in com-

puter science and artificial intelligence, clues into the neural underpinnings of the

computations taking place during creative RWPS, can inform the design of the next

generation of helper and exploration robots which need these capabilities in order to

be resourceful and resilient in the open-world.
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Chapter 10

Formalizing the MacGyver

Problem

In the previous chapter, we considered a possible model for human problem solving

and suggested that it might inform how we design creative AI systems. In this

chapter, we formalize this mathematically in the language of Classical Planning and

name them MacGyver Problems, in honor of the widely popular television series

from the 1980s that exemplified and celebrated resourcefulness and creativity in

high-stakes situations. We argue for creative problem solving to not only be a useful

skill for machines but also a useful test of intelligence.

10.1 Introduction

How should we evaluate machine intelligence? This a long-standing problem in AI

and robotics. From Alan Turing’s original question about whether machines can

think [Tur50] to today’s plethora of robotics and AI challenges [LDM12b, Fei03,

Bod10, BS16b, Coh05, Har91, Rie14] and data sets [JHvdM+17, WBC+15] , the

question of what makes a suitable test is still open, relevant, and crucial to judging

progress in AI while guiding its research and development.

The crux of this question is a choice about what we should measure. The Tur-

ing Test focused on natural language interactions; its progenies have since expanded
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to include vision, planning, game playing, localization and mapping and many oth-

ers. Research in various AI subfields is often guided by these sorts of targeted data

sets and challenges. Since research questions within AI subfields are quite rich and

complex, we might argue there is no need to pick one behavior, but rather pursue all

of them, separately and in parallel. However, psychological and zoological studies

in human and animal intelligence suggest the existence of general capabilities that

transcend these types of targeted abilities [Ack16].

We introduce the idea that general intelligence is encapsulated in notions of

resourcefulness, improvisation, and creative problem solving that we humans use

every day and that we celebrate in movies like “The Martian” and television shows

like “MacGyver.” We thus ask a different question: can machines improvise when

they become stuck on a problem?

As the first step towards formalizing intuitions of creative problem solving

and improvisation, we define a new class -MacGyver problems - using the language of

classical planning. The idea here is to let an agent begin with a seemingly unsolvable

problem and observe how it fares in attempting to find a solution. If the agent can

take actions and incorporate relevant knowledge from the environment to make the

problem more tractable (or at least computable in some cases), then we might be

able to predict the agent’s capabilities in solving novel problems in the open world.

We present these ideas in the context of an illustrative blocks world variant called cup

world (shown in Figure 10.1), where we define an initial instance that is unsolvable.

The agent must then transform and modify its initial domain representations to learn

and incorporate new concepts and actions that let it solve the problem.

In the following pages, we define the MacGyver framework more formally

(Section 10.3) and provide some complexity results. In Section 10.4, we return to

the cup world domain and outline how a MacGyver problem in cup world could

be solved, while noting the underlying challenges in solving these problems, more

generally. We then discuss, in Section 10.5, the space of capabilities and component

subtasks that an agent might need to solve MacGyver problems. In Section 10.6,

we discuss how we might evaluate these agents and how the research community
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Figure 10.1: Cups world: contains a block X and a cup C. It is easy to see how the
block can be moved from location L1 to L3. But, what if the gripper is not allowed
to touch the block? Details in Section 10.4.

can evaluate its progress. Finally, Section 10.7 concludes and discusses avenues for

future research. But first we briefly review the history of machine intelligence tests

and highlight some of their missing aspects in Section 10.2.

10.2 The Turing Test and its Progeny

Alan Turing (1950) asked whether machines could produce observable behavior (e.g.,

natural language) that we would say required thought in people. He suggested that

if interrogators were unable to tell, after having long free-flowing conversations with

a machine whether they were dealing with a machine or a person, then they could

conclude that the machine was “thinking”. Turing did not actually intend for this

to be a test, but rather a prediction of what could be achieved, technologically, in

fifty years [CVL13]. Nevertheless, others have since developed tests for machine

intelligence that were variations of the so-called Turing Test to address a common

criticism that it was easy to deceive the interrogator.

For example, [LDM12b] designed a reading comprehension test, entitled the

Winograd Schema Challenge, in which the agent is presented a question having

some ambiguity in the referent of a pronoun or possessive adjective. The question

asks the reader to determine the referent of this ambiguous pronoun or possessive

adjective by selecting one of two choices. [Fei03] proposed a variation of the Turing
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Test in which a machine can be evaluated by a team of subject matter specialists

through natural language conversation. Other proposed tests have attempted to

study a machine’s ability to produce creative artifacts and solve novel problems

[Bod10, BBF01, BS16b, Rie14, Wig06].

Extending capabilities beyond the linguistic and creative ones, [Har91] sug-

gested a Total Turing Test (T3) that expanded the range of capabilities to a full

set of robotic capacities found in embodied systems. [Sch12] extended the T3 to

incorporate species evolution and development over time, proposing the Truly To-

tal Turing Test (T4) to test not only individual cognitive systems but whether the

candidate cognitive architecture is capable, as a species, of long-term evolutionary

achievement.

Finding that the Turing Test and its variants were not helping guide research

and development, others proposed a task-based approach. Specific task-based goals

were couched as toy problems that were representative of a real-world task [Coh05].

The research communities benefited greatly from this approach and focused their ef-

forts towards specific machine capabilities like object recognition, automatic schedul-

ing and planning, scene understanding, localization and mapping, and even game

playing. Many competitions and challenges emerged that tested the machine’s per-

formance in applying these capabilities. Some competitions even tested embodiment

and robotic capacities that combined multiple tasks. For example, the DARPA

Robotics Challenge evaluated a robot’s ability to conduct remote operations includ-

ing turning valves, using a tool to break through a concrete panel, opening doors,

and remove debris from entryways.

Unfortunately, neither the Turing Test variants nor the task-based challenges

captured the intuitive notions of resourcefulness that is at the core of creative prob-

lem solving. Creative agents situated in the real world must be able to solve prob-

lems with limited resources. This means they must be able to improvise, challenge

prior assumptions, generate and test ideas, make new observations, and acquire new

knowledge from their environments.
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10.3 The MacGyver Framework

Our core proposal is to present an agent with a problem that is unsolvable with its

initial knowledge and observe its problem-solving processes to estimate the degree

to which it is creative. If the agent can think outside of its current context, take

exploratory actions, incorporate relevant environmental cues, and learn knowledge to

make the problem tractable (or at least computable), then it has the general ability

to solve open-world problems.

This notion of expanding one’s current context builds on Boden’s ([Bod10])

seminal work on creativity and, specifically, her distinction between exploratory and

transformational creativity. Boden introduced the notion of a conceptual space

and proposed that exploratory creativity involves discovering new objects in this

space. Transformational creativity involves redefining that conceptual space and

producing a paradigm shift. There have been a few attempts to formalize and

conceptualize these ideas, including Wiggins ([Wig06]) Creative Systems Framework.

He formalized Boden’s notion of a conceptual space C that is a subset of a universe

U , that in turn contains every possible concept. A conceptual space, according

to Wiggins, is defined by a set of rules R for constraining the space and a set of

rules T for traversing it. Exploratory creativity occurs when the rule sets are used

within a concept space to discover new concepts. Transformational creativity occurs

when the conceptual space is redefined by modifying rule sets. Using this abstract

formalism, he began the task of characterizing the behavior of creative systems and,

importantly, distinguishing between object-level search within a conceptual space

and meta-level searches of conceptual spaces.

However, more work was still needed to operationalize these concepts, which,

while more formal than Boden’s original proposal, lacked depth and connections to

work in AI and robotics formalisms. More recently, [CBCH16] built on Wiggins’

basic ideas and proposed that the dual searches - exploratory and transformational -

can be set up as a hierarchical reinforcement learning problem formalized in terms of

Markov decision processes. While this is a promising approach to formalizing these
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dual searches, we believe that it is just one piece of a larger puzzle. In response, we

propose an approach that unifies several AI research traditions including not only

reinforcement learning but also planning, belief revision, and others. We can now

start to formalize the MacGyver framework.

10.3.1 Formal Definition of a MacGyver Problem

We define L to be a first-order language with atoms p(t1, . . . , tn) and their negations

¬p(t1, . . . , tn), where ti represents terms that can be variables or constants. An atom

is grounded if and only if all of its terms are constants. A planning domain in L

can be represented as Σ = (S,A, γ), where S denotes the set of states, A the set of

actions, and γ the transition functions. A planning problem P = (Σ, s0, g) consists

of the domain, the initial state s0, and the goal state g. A plan π is any sequence

of actions. A plan π is a solution to the planning problem if g ⊆ γ(s0, π). We

also consider the notion of state reachability and the set of all successor states Γ̂(s),

which defines the set of states reachable from s.

To formalize a MacGyver problem, we define a universe and a world within

this universe. The world describes the full set of abilities of an agent and includes

those abilities that the agent knows about and those of which it is unaware. We

can then define an agent subdomain as representing a proper subset of the world

that is within the agent’s awareness. A MacGyver problem then becomes a planning

problem that is defined in the world, but outside the agent’s current subdomain, as

depicted in Figure 10.2.

Definition (Universe). A universe U = (S,A, γ) is a classical planning domain that

represents all aspects of the physical world perceivable and actionable by any and

all agents, regardless of capabilities. This includes all allowable states, actions, and

transitions in the physical universe.

Definition (World). A world Wt = (St, At, γt) is a portion of the Universe U

corresponding to those aspects that are perceivable and actionable by a particular

species t of agent. Each agent species t ∈ T has a particular set of sensors and
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actuators allowing agents in that species to perceive a proper subset of states, actions

or transition functions. Thus, a world can be defined as

Wt = {(St, At, γt) | ((St ⊆ S)∨(At ⊆ A)∨(γt ⊆ γ))∧¬((St = S)∧(At = A)∧(γt = γ))}.

Definition (Agent Subdomain). An agent subdomain Σt
i = (Sti , A

t
i, γ

t
i ) of type t is

a planning subdomain that corresponds to the agent’s perception and action within

its world Wt. In other words, the agent is not fully aware of all of its capabilities at

all times, and the agent domain Σt
i corresponds to the portion of the world that it

is perceiving and acting at time i.

Σt
i = {(Sti , Ati, γti ) | ((Sti ⊂ St)∨(Ati ⊂ At)∨(γti ⊂ γt))∧¬((Sti = St)∧(Ati = At)∧(γti = γt))}

Definition (MacGyver Problem). A MacGyver problem with respect to an agent t

is a planning problem in the agent’s world Wt that has a goal state g that is currently

unreachable by the agent. Formally, a MacGyver problem PM = (Wt, s0, g), where

• s0 ∈ Sti is the initial state of the agent

• g is a set of ground atoms

• Sg = {s ∈ S|g ⊆ s}

Where g ⊆ s′, ∀s′ ∈ Γ̂Wt(s0) \ Γ̂Σti
(s0).

10.3.2 Complexity Results and Importance of Heuristics

It naturally follows that, in the context of a world Wt, the MacGyver problem PM is

a classical planning task which from the agent’s current perspective is unsolvable. We

can reformulate the MacGyver problem in terms of language recognition to analyze

its complexity. This will clarify the difficulty of the problem, and, importantly,

establish the key role that heuristics play when solving MacGyver problems.
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Figure 10.2: Conceptual diagram showing several exemplary MacGyver problems
and how they relate to classical planning tasks. Three agents (t = 1, 2, 3) are depicted
along with their starting domains (Σt

0) and their worlds (Wt). Operators and states
not in the agent’s initial domain are shown in red. Thus, states s3, s4, s5, s6, s7 are
unreachable from s0 in domain Σ1

0, and consequently could be characterized as goal
states of MacGyver problems, albeit of different difficulties.

Definition (MGP-EXISTENCE). Given a set of statements D of planning prob-

lems, let MGP-EXISTENCE(D) be the set of all statements P ∈ D such that P

represents a MacGyver problem PM .

Theorem 10.3.1 MGP-EXISTENCE is decidable.

Proof The number of possible states in the agent’s subdomain Σt
i and the agent’s

world Wt are finite. So, it is possible to do a brute-force search to see whether a

solution exists in the agent’s world but not in the agent’s initial domain.

Theorem 10.3.2 MGP-EXISTENCE is EXPSPACE-complete.

Proof (Membership). An MGP amounts to looking to see if the problem is a solv-

able problem in the agent-domain. Upon concluding it is not solvable, the problem

then becomes one of determining if it is a solvable problem in the world corre-

sponding to the agent’s species. Each of these problems are PLAN-EXISTENCE
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problems, which are in EXPSPACE for the unrestricted case [GN04]. Thus, MGP-

EXISTENCE is in EXPSPACE.

(Hardness). We can reduce the classical planning problem P (Σ, s0, g) to an

MGP (PLAN-EXISTENCE ≤pm MGP-EXISTENCE), by defining a new world W.

To define a new world, we extend the classical domain by one state, defining the

new state as a goal state, and adding actions and transitions from every state to

the new goal state. We also set the agent domain to be the same as the classical

planning domain. Now, P (Σ, s0, g) ∈ PLAN-EXISTENCE iff P (W, s0, g) ∈ MGP-

EXISTENCE for agent with domain Σ. Thus, MGP-EXISTENCE is EXPSPACE-

hard.

Theorems 1 and 2 show that the question of knowing whether a given problem

is a MacGyver problem, although computable (in the finite case), is still intractable.1

Thus, the agent will necessarily need heuristics to explore its own search space. We

argue that the role of heuristics in solving these problems is paramount. Indeed,

there is no single heuristic in any sense of the word [Lan17] that can guide an agent

in all MacGyver problems. Even for a given MacGyver task, it is unlikely that a

single heuristic will be sufficient. This means that the agent must use and reason with

a family of heuristics as it searches for a solution. This is good news for cognitive

systems research that aims to leverage the power of heuristics in problem solving

and align it with parallel results in humans, and, conversely, uncover heuristics that

people use when solving these problems to better inform agent design. In fact,

we might flip how we think about heuristics for MacGyver problems: from a weak

method that either produces a suboptimal solution or does not guarantee a solution

at all, to a necessary step towards achieving representational change or domain

transformation, thereby eliciting satisfactory solutions.
1The proofs for these theorems are straightforward applications of complexity-theoretic tech-

niques and have been omitted here for brevity.
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10.3.3 MacGyver Solution via Domain Modification

By definition, MacGyver problems require that the initial domain be transformed in

some way (e.g., by adding a state, transition function, or action) for the goal state

to be reachable. Here, we provide some formal specifications for what a solution

strategy might look like for a MacGyver agent, which must keep modifying its domain

representation until it can reach the goal.

Definition (Agent Domain Modification). A domain modification Σt∗
j involves ei-

ther a domain extension or contraction (for brevity, we only consider extensions

here). A domain extension Σt+
j of an agent is an Agent-subdomain at time j that

is in the agent’s world Wt but not in the agent’s subdomain Σt
i in the previous

time i, such that Σt
i precedes Σt

j (i.e., Σt
i � Σt

j). The agent extends its subdomain

through sensing and perceiving its environment and its own self. E.g., the agent can

extend its domain by making an observation, receiving advice or an instruction or

performing introspection. Formally,

Σt+
j = {(St+j , At+j , γ

t+
j ) | (St+j ⊂ St \ Sti ) ∨ (At+j ⊂ At \ Ati) ∨ (γt+j ⊂ γt \ γti )}.

The agent subdomain that results from a domain extension is Σt
j = Σt

i ∪ Σt+
j . A

domain modification set ∆Σti
= {Σt∗

1 ,Σ
t∗
2 , . . . ,Σ

t∗
n } is a set of n domain modifica-

tions on subdomain Σt
i. Let Σt

∆ be the subdomain resulting from performing the

modifications in ∆Σti
on Σt

i.

Definition (Strategy and Domain-Modifying Strategy). A strategy is a tuple ω =

(π,∆) of a plan π and a set ∆ of domain modifications. A domain-modifying strategy

ωC involves at least one domain modification, i.e., ∆ 6= ∅.

Definition (Context). A context is a tuple Ci = (Σi, si) that represents the agent’s

subdomain and state at time i.

We are now ready to define an insightful strategy as a set of actions and

domain modifications that the agent must perform for the problem’s goal state to
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be reachable.

Definition (Insightful Strategy). Let Ci = (Σt
i, s0) be the agent’s current context.

Let PM = (Wt, s0, g) be a MacGyver problem for the agent in this context. An

insightful strategy is a domain-modifying strategy ωI = (πI ,∆I) that, when applied

in Ci, results in a context Cj = (Σt
j , sj), where Σt

j = Σt
∆I such that g ⊆ s′,∀s′ ∈

Γ̂Σtj
(sj).

Formalizing the insightful strategy in this way is analogous to the moment of insight

reached when a problem becomes tractable (or in our definition computable) or when

a solution plan becomes feasible. Specifically, solving a problem involves creative

exploration, domain extensions, and domain contractions until the agent has the

information it needs within its subdomain to solve it as a classical planning task,

and it does not need any further domain extensions.

Note, however, the definitions stated here do not require a multitude of do-

main transformations. The agent might achieve a flash of insight about the ap-

propriate representation in a single transformation. Alternatively, the agent may

work through several minor transformations. So the definitions here are meant to

capture creative problem solving more generally, encompassing both single-step and

multi-step insights.

Moreover, the definition of an insightful strategy does not require using a

single strategy for all MacGyver problems, as no such universal strategy exists.

Instead, definition 9 merely serves as a formalism for capturing notions of context

and representational change that apply to any solution. That is, the definition is

not tied to a particular algorithm or solution plan, and accordingly does not speak

to the quality of the solution reached. An insightful strategy is just meant to move

the agent to a state from which the goal state is reachable. Achieving the goal state

might still be intractable, as is any classical planning problem.
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10.3.4 Connections to Insight Problem Solving in Humans

The MacGyver problem formulation proposed in this essay draws substantial inspi-

ration from decades-old lines of psychological research on insight problem solving.

There are numerous theories of insight and its links to creativity, one of the earliest

being Wallas’ ([Wal26]) four-stage framework of preparation, incubation, illumina-

tion, and verification. Many subsequent psychological theories have addressed what

solvers were doing during each of these stages. What these theories shared was that

insight problem solvers encountered an impasse and later had an insight that let

them solve the task [Ohl92]. In this essay, we consider the problem-space approach

to insight problem solving, in which impasses occur due to an incorrectly chosen

problem representation, such as wrong propositions or operators) [KS90, Ohl92].

Impasses can be broken by revising the problem representation, which in turn can

be viewed as a meta-level search over the space of representations. An alternative

approach to thinking about insight is to consider it not as a search through a prob-

lem space and then a meta-level space, but as a memory retrieval task of indexing,

retrieving, and applying an analogous knowledge structure [LJ88].

Notwithstanding their differences, all the theories agree about the importance

of cues and heuristics in the search (or as appropriate, analogical retrieval) process.

These cues and heuristics help the solver consider previously ignored knowledge

structures, propositions, relations, and operators, as well as consider new ones. The

heuristics themselves may be strategies for navigating through or modifying the

knowledge structures (e.g., problem representations) that contain the problem or

solution. In addition, some heuristic strategies might actively or passively participate

with the surrounding environment and observe what happens [Sar18a]. The purpose

of these cues and heuristics is to arrive at a representation that allows a full or partial

insight. We preview a smattering of such heuristics in the next section, where we

provide a blueprint for solving a MacGyver problem in the context of the cup world

domain introduced in Section 10.1. Overall, we believe the connections between

the MacGyver problem solving and insight problem solving in humans to be deeply
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interesting and worthy of further research.

10.4 A Conceptual Blueprint for Solving Cup World

We are now ready to operationalize the MacGyver framework in the cup world do-

main, outline the domain transformations needed to solve this problem, and discuss

some domain-modifying strategies. This will highlight the sorts of computational,

perceptual, and action capabilities needed to execute the appropriate strategy, as-

similate the necessary knowledge, and make the needed domain transformations.

The cup world domain consists of a block and cup on a table, as shown in

Figure 10.1. Consider a start domain Σt
0 for an agent t with a gripper. Let us say

the agent has the ability to perceive and reason about relational aspects of its envi-

ronment (e.g., whether an object is visible, whether it has been touched, and spatial

relationships between objects). The domain is discrete and finite, with actions being

represented symbolically. Let us also assume that the agent is a pick-and-place robot

with a single operator for picking and placing objects; this pick -and -place action has

an associated script composed of several sub-actions (reach-for , grasp, lift ,move-over,

set-down, release), that form the set of primitive actions.

The agent is primarily tasked with picking and placing objects, and accord-

ingly has chunked subactions into a single pick -and -place macro-operator that in-

creases planning efficiency. That said, the primitive actions can be directly coupled

to robotic actuators with precise continuous values. For example, the lift action can

be parametrized to 3D point clouds that represent objects in space and real-valued

vertical displacements. Later in this section, we comment on extensions to infinite

and continuous space in which new primitive actions can be generated from param-

eterizations of actuator controls. Thus, we assume here that the robot can process

3D point cloud information from the environment and determine whether an object

is a cup or a block, and whether it is upright.

In Σt
0, we can solve traditional planning problems such as moving the block

x from l1 to l3, with the plan π = {pick -and -place(x, l1, l3)}. We can define a
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MacGyver problem, PM , for this agent t given a start domain Σt
0 by requiring that

the block x be moved to l3 without touching it, that is touched(x) = False. To

handle this problem, the agent must extend its start domain by using heuristics

and cues. Although there may be many different ways to solve this MacGyver

problem, let us consider one particular approach and analyze more closely what sorts

of heuristics and cues might be activated by an agent conforming to it. Consider a

set of two domain extensions ∆Σt0
= {Σt+

1 ,Σt+
2 }. The first extension Σt+

1 includes a

nudge action and the second domain extension Σt+
2 includes several new actions and

the fluent enclosed.

We can decompose the pick -and -place action into its primitive actions (Heuris-

tic 1: decompose chunks) and then attempt to replan with these primitive operators.

However, this will fail, as any action that requires grasping the block will trigger the

touched event. Thus, the agent may instead attempt to solve a simpler problem of

moving the block without picking it up (Heuristic 2: reformulate goals and define

simpler goals). [LPB+16] have reported an architecture for hierarchical problem

solving that searches through a space of problem decompositions, which might be a

fruitful approach here. The lift action triggers the pickedup event, so the agent must

avoid this action. This means that the lift action’s postcondition of holding must be

relaxed as a requirement from themove-across action (Heuristic 3: relax constraints

and preconditions). The agent then defines a new action, nudge, which is essentially

the move-across action without the holding requirement. Upon performing this

action in the environment, the agent notices that the cup c can be moved from one

location to another without picking it up (Heuristic 4: notice invariants). This is a

major milestone in the agent’s problem solving. It can now solve the intermediate

problem (originally a MacGyver problem, as well) by following the plan

π = 〈reach-for(c), grasp(c),nudge(c, l3), release(c), reach-for(x), grasp(x),

nudge(x, l2), release(x), pick -and -place(c, l3, l1), reach-for(x),nudge(x, l3)〉.
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The agent might not know it yet, but it is much closer to solving the more

difficult “not-touched” problem. Next, the agent might attempt to relax constraints

on other primitive actions and discover that it can pick up, flip, and set down the cup

on top of the block, as set-down otherwise requires a clear location. In doing so, it

might notice something unexpected, namely that the block disappears (Heuristic 5:

notice anomaly). The agent can then hypothesize a new relation called P (x, c, l1) to

account for this behavior and generate a new action, cover, to capture the dynamics

(Heuristic 6: hypothesize predicates). After experimenting with this process, and

through language-based human assistance, it might rename the predicate P to be

enclosed.

Finally, with additional experimentation, the agent must learn a scoot action,

which is a variant of nudge with added knowledge that there will be co-movement of

the block and cup if the cup encloses the block. The purpose of this example is not

to demonstrate a generalizable solution to a MacGyver problem, which no one has

achieved to date. However, it does provide a rough sense of the types of knowledge

and heuristics that could support creative problem solving in this domain.

Thus far, we have treated perceptual capabilities and primitive actions as

symbols in cup world. However, in real-world settings, these primitive actions will be

grounded in robotic actions that are parametrized as points in continuous 3D space,

with numeric color and depth values. We can extend our formulation to infinite

MacGyver problems that, informally, require the agent to synthesize new symbols

from real-valued grounded actions and percepts (e.g., learning to detect maroon

when it has a color detector and knowledge of the symbol red). We can pursue such

questions in conjunction with research on integrating task and motion planning, and

on learning symbolic operators from continuous spaces [MZPS12, KKLP14, KLP13,

SFR+14, GLPK17].
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10.5 Agent Capabilities and Subtasks

As we have seen, solving even simple MacGyver problems can be a challenging en-

deavor, requiring the ability to track and maintain cues and heuristics while remain-

ing cognizant of the current state of problem solving. Nevertheless, we are optimistic

that research progress can be made in this regard if we can leverage results from rel-

evant subfields in AI and cognitive systems. Below is short, nonexhaustive list of

subtasks that MacGyver problems appear to require:

1. Impasse Detection. As noted earlier, determining the existence of a MacGyver

problem is intractable. Thus, the agent must use heuristics in an attempt to solve a

MacGyver problem as a traditional planning task. It must also be equipped to detect

unsolvability or at least intractability [BJS13, LMG16]. Recent efforts by the plan-

ning community have started to address this issue through the “First Unsolvability

IPC” at ICAPS 2016.

2. Domain Transformation and Problem Restructuring. Chunk decompo-

sition and constraint relaxation have been well studied in psychology [Kno09]. The

extensive literature in plan task revision has formally studied the effects of changing

states, goal, and operators [HdMdBW14, GKE+10].

3. Experimentation. The agent cannot know that scoot and pick-and-place have

similar effects, so it must learn this through embodied interaction with the world.

We can apply research on learning from exploration and intrinsically motivated re-

inforcement learning (curiosity, exploration, and play) to enable an agent to explore

a problem space in search of operator variants [PAED17, HS17, CBS05, CBCH16].

4. Discovery Detection. For the agent to have learned the enclosed predicate,

it must detect unexpected events, which in this case was an unexpected change

in a fluent. Appropriate mechanisms for tracking uncertainty using probabilistic

approaches (e.g., Bayesian and information-theoretic methods), in combination with

salience and attention mechanisms, can help detect these events. From the real-

world standpoint, the agent must possess capabilities to be able to execute this

exploration and discovery process, including grasping and manipulating unfamiliar
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objects. These practical abilities are not trivial, and, in combination with intelligent

reasoning, will provide a clear demonstration of agent autonomy while solving real-

world problems.

5. Domain Extension. Finally, the agent must know how and when to assimilate

new knowledge about its domain. This involves more than simply adding new domain

elements; it must determine if the new knowledge will be consistent with existing

content. Here, we can turn to research in belief revision that offers a formal approach

to addressing these sorts of knowledge representation issues [HdMdBW14].

In addition, the agent must possess a set of crucial supporting skills, such as

abilities to (1) dynamically invoke and use families of heuristics, (2) consider internal

and external cues at varying levels of abstraction, (3) operate in a ‘problem-stewing’

or cue-monitoring mode, (4) formulate and redefine symbolic knowledge, including

propositions, operators and goals, (5) perform meta-level searches over a problem

space, and (6) learn and acquire knowledge from different domains. We believe that,

to design agents that can solve MacGyver problems, it is essential that independent

lines of research be merged. Importantly, we must combine the subtasks mentioned

above and the supporting skills into an integrated cognitive system that can be

embodied and situated in physical or virtual environments.

10.6 Evaluating Agents and Measuring Research Progress

Any proposed framework for intelligent agents must be accompanied by a discussion

of how to evaluate those agents. For the Turing Test and many of its variants, one can

only measure agents by the ultimate but subjective human judgment. This involves

the question of being able to identify the source of behavior as human or artificial.

Essentially, this was an all or nothing proposition that was highly subjective. We

argue that this is insufficient. The MacGyver formulation offers subjective and

objective options that were not available in many previous approaches. We propose

three subclasses of measures: problem-centric , solution-centric, and agent-centric.

Problem-centric measures are based on a MacGyver problem’s inherent diffi-
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culty. Because such tasks have a domain-independent formulation, we can consider

measures like the reachability of goal states and distance from start state, the size of

the initial domain, the size of the minimal domain that contains both the start and

goal state, and the existence and number of dead-end states (from which the agent

can never solve the problem). Problem-centric measures, at their core, focus on

the difficulty of MacGyver problems themselves, independent of the specific solution

taken by the agent.

Solution-centric measures consider the solution found on a given MacGyver

problem. Humans place high value on elegant and clever solutions to complex prob-

lems. We might quantify elegance and cleverness as complexity of an insightful

strategy, the nature and number of domain transformations needed, the nature and

number of heuristics and cues used in solving the problem, the time taken to solve

a problem, the length of the solution plan, and in many other ways. Solution-

centric metrics, when combined with problem-centric ones could even capture par-

tial progress. For example, an agent making even limited progress on a very difficult

problem might be scored higher than an agent that fully solves easier problems.

Solution-centric measures could also capture subjective judgments of a human ar-

biter, such as judging whether a human or an artificial agent generated a solution.

Neither problem-centric nor solution-centric measures capture the inherent

resource limitations of the agent and its environment. The agent’s sensory-motor and

cognitive capabilities limit how it initially represents problems, and which problems

and strategies are viable. We would not expect a Roomba to pick up a block in cup

world because it has no arms. Agent-centric measures might consider these resource

limitations and therefore acknowledge that a task may be a MacGyver problem for

one agent but not for another. Agent-centric measures could let us track and update

the knowledge an agent has acquired during its lifetime. We can ask if the agent has

improved its overall problem-solving capabilities and used knowledge gained from

solving one task in another one. Finally, agents could be placed in adversarial games

with one agent being tasked to design MacGyver problems for the other. This would

let us evaluate an agent’s creative ability not only to solve MacGyver problems, but
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also to generate them.

We do not advocate for any one specific measure. Indeed, it might be best to

take a hybrid approach that incorporates all three. The different metrics could let

us study whether agents solving one MacGyver problem can solve similarly difficult

(or easier) ones. We could also see whether the types of knowledge and heuristics

that work with one class of MacGyver problems also work with another class.

Thus far, we have discussed evaluating problem-solving agents. However,

we would also like to be able to track how the overall research community designs

creative AI. To this end, we can track the progress on the independent subtasks

identified earlier, which map well onto existing research agendas in AI subfields. In

addition, we urge the community to invest time and funds to develop support skills

needed for effective problem solving, such as the ability to draw on heuristics, to

manipulate symbolic knowledge, and to play a role in integrated systems.

10.7 Conclusion

In this essay, we introduced a new class of AI challenges - MacGyver problems -

defined as planning problems that are seemingly unsolvable, but where an agent

can widen its representation of the domain, and maybe its understanding of the

world, to discover solutions. Inspired by work in human insight problem solving and

using the language of classical planning, we defined this class of tasks in a domain-

independent framework that can generate domain-specific problem instances. We

described one such instantiation using a toy domain called “cup world.” We showed

that recognizing and solving MacGyver problems are computationally intractable.

Thus, a cognitive system must leverage families of heuristics, strategies, cues, and

experiments to find solutions.

We walked through a heuristic approach to solving cup world, which also

let us discuss the various agent capabilities needed to solve these problems. It is

especially interesting to note the parallels between MacGyver problems and human

insight problems, and we suggest that much can be learned from how humans solve
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them. We also provided a short and nonexhaustive list of research subtasks, that is

crucial to building cognitive systems that can solve MacGyver problems. Finally, we

discussed possible ways to measure and evaluate agents that attempt to solve such

problems, as well as research progress as a whole. The formulation does not require

specific internal mechanisms or particular solution strategies, but instead focuses on

general features of creative problem solving.

We believe the formulation of such challenge problems is only the first step,

albeit a fruitful one, towards designing creative cognitive systems. We hope the

formalism will help guide research by providing a set of formal specifications for

measuring AI progress based on the ability to solve increasingly difficult MacGyver

problems. We believe the cognitive systems community is ideally suited to tackle

these challenge problems, and we encourage the community to use the framework

and pursue research on (a) designing additional domain-specific instances of Mac-

Gyver problems, (b) updating cognitive architectures to solve these problems, and

(c) conducting studies that compare performance of artificial agents to humans on

these problems; even ones that are simple for humans like cup world might shed light

on humans’ heuristics.
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Chapter 11

Solving MacGyver Problems

In Chapter 10, I introduced the idea of MacGyver problems and began the difficult

task of formalizing creative problem solving as MacGyver problems in the language of

classical planning. The formalisms presented in Chapter 10 were broad and covered

problems encountered by one or more agents and covered domain transformations

involving expansions and contractions. In this chapter, I conclude Part III with a

discussion of algorithms that can be used to solve certain MacGyver problems. In

doing so, I redefined certain aspects of the formalisms presented in Chapter 10 to

make them simpler and more narrow in their scope.

11.1 Introduction

Let’s begin by turning our focus to classical planning, the AI tradition that serves

as a foundation for MacGyver problems. Classical planning involves building a

sequence of actions, i.e., a plan, that achieves certain goals within an environment.

Central to classical planning is the domain-model, a symbolic abstraction of the

environment that captures objects, relationships and actions considered relevant to

the goals. As we have seen from the last chapter, the domain model limits what

goals a classical planning agent can conceivably achieve. Domain models are often

handcrafted by domain experts and are intended to be general, allowing an agent to

achieve a wide variety of goals within the environment. However, domain models can
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be rendered unsuitable (goals unreachable) if the goals change or if the underlying

environment changes in a way that requires the agent to consider new objects, actions

or relationships. How can an agent adapt and transform its domain model when

goals are unreachable, but discoverable? If future AI systems are to be resilient and

autonomous in novel environments they must be able to continually do so during

planning and acting.

Current approaches to addressing this problem, at the intersection of plan-

ning and learning, propose learning domain models [AFP+18] from observations

[MZPS12], from action traces [GLP17], from reward signals [SAFMJ16], and from

natural language [LRF+17]. A challenge that still remains is how to update domain

models in real-time during problem-solving (planning and execution). In such cases,

the agent will not only need to acquire new domain knowledge on-the-fly, unsuper-

vised, but also apply it to the problem at hand immediately, and continue doing so

until a goal is reached.

We saw that MacGyver problems are essentially classical planning problems,

and are initially unsolvable for the agent because of the agent’s incorrect or incom-

plete representation of its environment, either at the symbolic or the subsymbolic

level. The MacGyver problem framework provides a suitable foundation to address

the challenge of learning while problem solving, noted earlier. What makes solving

MacGyver Problems difficult is the lack of reward signals, distance measures and

heuristics, supervision, and a general lack of data to learn from. In this chapter,

we propose a first approach for solving (or at least valiantly attempting) MacGyver

problems.

We propose a set of algorithms (Section 11.3) for allowing an agent to fix

an incorrect or incomplete classical planning domain by identifying anomalies (Sec-

tion 11.3.2), adding new predicates (Section 11.3.3), generating new actions (Section

11.3.4), and generating new constant symbols (Sec: 11.3.5), in the absence of super-

vision, distance measures, and reward signals. The algorithms computationalize the

ideas of sense-making and discovery inherent in human problem-solving. We demon-

strate a proof-of-concept robotic implementation in a 3D physics-based environment.
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11.2 The MacGyver Problem

Consider a first-order language L with atoms p(t1, . . . , tn) and their negations

¬p(t1, . . . , tn) (collectively, literals l), where ti represents terms that can be variables

or constants. A literal is grounded if and only if all of its terms are constants. We

simplify and improve the MacGyver formalism introduced by Sarathy et al. [SS18b],

as follows.

11.2.1 Defining a MacGyver Problem

Definition (World). World W = (S,A, γ) is a classical planning domain in L.

S ⊆ 2{all ground atoms of L} denotes the set of states. A is the set of all ground

instances a of operators in O, where O is the set of operators. An operator is a

tuple o = (n(x1, . . . , xm), pre(o), post(o)), where n is the operator symbol and xi are

variable symbols, and pre(o) and post(o) are sets of literals. γ(s, a) = (s−post−(a))∪

post+(a)1, if a ∈ A is applicable to s ∈ S, and otherwise γ(s, a) is undefined. S is

closed under γ.

The World W describes the environment in which the agent is planning. An

agent subdomain, defined over Lt is a part of W (or the entirety of the world itself)

that is within the agent’s awareness.

Definition (Agent Subdomain). An agent subdomain Σt = (St, At, γt) is also a

classical planning domain in Lt ⊆ L that corresponds to the agent’s perception and

action within its world W.

Σt = {(St, At, γt) | ((St ⊆ S) ∨ (At ⊆ A) ∨ (γt ⊆ γ))}

A MacGyver Problem is a classical planning problem that is defined in the

World W, but outside the agent’s initial subdomain Σ0. Formally,

Definition (MacGyver Problem). MacGyver Problem PM = (W,Σ0, s0, g), where

Σ0 is the initial agent subdomain and
1The + and − superscripts indicate subsets of post(o) corresponding the sets of positive and

negative literals, respectively.
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• (S0 ⊂ S) ∨ (A0 ⊂ A) ∨ (γ0 ⊂ γ)

• s0 ∈ S0 is the initial state of the agent

• g is a set of ground atoms

Where @s ∈ S, such that s ∈ Γ̂Σ0(s0) and g ⊆ s

11.2.2 Solving MacGyver Problems

Definition (Agent Domain Modification). A domain modification Σ∗u involves either

a domain extension or contraction (we only consider extensions here). A domain

extension Σ+
u of an agent is an Agent-subdomain at time u that is in the world W

but not in the agent’s subdomain Σt in the previous time t, such that Σt � Σu. The

agent extends its subdomain through sensing and perceiving its environment and its

own self. E.g., the agent can extend its domain by making an observation, receiving

advice or an instruction or performing introspection. Formally,

Σ+
u = {(S+

u , A
+
u , γ

+
u ) | (S+

u ⊆ S \ St) ∨ (A+
u ⊆ A \ At) ∨ (γ+

u ⊆ γ \ γt)}.

The agent subdomain that results from a domain extension is Σu = Σt ∪ Σ+
u . A

domain modification set ∆Σt = {Σ∗1,Σ∗2, . . . ,Σ∗n} is a set of n domain modifications

on subdomain Σt. Let Σ∆ be the subdomain resulting from applying ∆Σt on Σt.

Definition (Strategy). A strategy is a tuple ω = (π,∆Σt) of a plan π and a set

∆Σt of domain modifications. A domain-modifying strategy ωC involves at least one

domain modification, i.e., ∆Σt 6= ∅.

Definition (Context). A context is a tuple Ci = (Σt, st) that represents the agent’s

subdomain and state at time t.

We are now ready to define an insightful strategy as a set of actions and

domain modifications that the agent must perform for the problem’s goal to be

reachable.
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Definition (Insightful Strategy). Let C0 = (Σ0, s0) be the agent’s starting context.

Let PM = (W,Σ0, s0, g) be a MacGyver Problem for the agent in this context.

An insightful strategy is a domain-modifying strategy ωI = (πIt ,∆
I
Σt

) that, when

applied in C0, results in a context Cu = (Σu, su), where Σu = Σ∆ such that ∃s′ ∈

Γ̂Σu(su), g ⊆ s′.

Intuitively, an insightful strategy captures idea that solving a problem involves explo-

ration and domain expansion until the point (akin to the “Aha!” moment of insight)

when finding a plan with the domain becomes feasible.

11.3 Proposed Algorithms

Our approach to solving MacGyver Problems is through hypothesis generation and

active experimentation. We first define an oracle function so that we can formalize

the process of requesting and using information from W. While, the environment

itself can be thought of as an oracle, the oracle could just as easily be any function

that has access to state transitions in W.

Definition (Oracle). Oracle ϕW : s0 × A 7→ S has access to the transitions in W

such that given a state s ∈ S and an action a ∈ A, the oracle responds with a new

state s′ ∈ S that need not be in St. We impose that the state presented to the oracle

must be the state which an agent is currently in, namely its start state s0.

Definition (Planner) A classical planner ρ : P 7→ Π is a function that maps a

classical planning problem P into a plan π ∈ Π (namely, a sequence of actions) that

is a successful plan or, if there is none, then returns ∅.

11.3.1 Overall Problem Escalation Procedure

Algorithm 11.1 directs the overall process by recursively decomposing the goal and

escalating problem-solving. First, it attempts to solve using planner ρ, then escalates

to explore other applicable actions with Algorithm 11.2, which then escalates further

to create new actions (previously thought to be inapplicable) with Algorithm 11.4.
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Algorithm 11.1 solve(P,∆Σt , ϕ
W, ρ,Θ)

1: P = (Σ0, s0, g): Planning Problem
2: ∆Σt

: The set of domain modification
3: ϕW: oracle function
4: ρ: planner function
5: Θ: Exploration parameters
6: π ← ρ(P)
7: if π 6= ∅ then
8: return ωI = (π,∆Σt

)
9: else if π = ∅, |g| = 1 then
10: Σ∗u ← hypothesize(Σt, s0, ϕ

W,Θ), where t < u
11: ∆Σu

← ∆Σt
∪ Σ∗u

12: Σu ← update(Σ∗u,Σt)
13: return solve(Pj ,∆Σu , ϕ

W, ρ)
14: else if π = ∅, |g| > 1 then
15: g′ ← g.remove(l ∈ g)
16: return solve(P ′(Σ0, s0, g

′),∆Σt
, ϕW, ρ) · (πg′→g,∆Σt

g′
)

17: end if

Central to the approach is the process of sense-making by detecting anomalies, which

are discrepancies between the current state and expectations imposed by the current

domain model. The agent attempts to resolve existing anomalies by hypothesizing

domain modification with Algorithms 11.2 and 11.3, or raise new anomalies (that it

also subsequently resolves) by creating new actions.

Specifically, if ρ did not find a plan, Algorithm 11.1 recursively relaxes the

goal. Line 16 shows the plan for achieving the original goal g from the state resulting

from the execution of the plan for g′, returned by the first recursive call. Once

relaxed, it calls Algorithm 11.2 to hypothesize new actions.2

Running Example: Consider a running example in which an agent is given

a domain definition for the classical 4-Op Blocks World domain extended with a

predicate visible(X). Now, suppose we deploy this agent in an environment with

a cup and block (Cups World), and suppose the agent does not know any of the

cup’s affordances and believes it can apply the available actions to the cup, as well.

Consider a planning problem P for this agent, with a goal g = ¬visible(block),

Σ0 = 4-Op Blocks World, and a start state, as follows:
2The agent does not know if P is a MacGyver Problem, which is an intractable problem in and

of itself [SS18b].
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s0 = {ontable(block), clear(block), ontable(cup),

clear(cup), handempty, visible(cup), visible(block)}

In the interest of brevity, we will walk through only a single search for the solution.

In reality, the agent might attempt several suboptimal choices before reaching the

one we outline. Upon failure of ρ to solve the problem, it will escalate to Algorithm

11.2 for anomaly detection and domain modification.

11.3.2 Recognizing Anomalies

Algorithm 11.2 (Hypothesize) initializes sets P1, P2A and P2B (initialize to ∅), which

capture literals that are anomalies (described below). The algorithm also initializes

a set Selected for tagging actions previously explored. While anomalies exist (line 8)

(i.e., at least one of the sets P1, P2A and P2B is not empty), it identifies applicable

grounded actions in state s0 that have not been previously selected (lines 9). If no

applicable actions are available or if all actions have been tried, the algorithm esca-

lates to Algorithm 11.4 to search for actions incorrectly thought to be inapplicable. If

there are available applicable actions, the algorithm constrains the set into one that

is smaller. The constraints can be based on meta-heuristics: for example, retaining

only those actions that require an object to be grasped. Such a meta-heuristic might

prevent an agent from trying irrelevant actions initially. In our running example,

the agent will identify two applicable actions in s0: pickup(cup), pickup(block).

The Algorithm 11.2 then randomly selects an action from the constrained set

(line 14) and calls the oracle ϕW (i.e., executes the action, line 15), which brings it to

the next state sj . In our running example, suppose the agent chooses and executes

pickup(cup). Once, the action is performed, state s1 follows:

s1 = {ontable(block), clear(block), holding(cup), visible(cup), visible(block)}

Now, three types of anomalies can occur:

• A Type I anomaly occurs when the agent expects to observe a positive literal,

but does not.
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Algorithm 11.2 hypothesize(Σt, s0, ϕ
W,Θ)

1: Σt: Domain
2: s0: Start state (agent’s current state)
3: ϕW: oracle function
4: ρ: planner function
5: Θ: Exploration parameters
6: P1, P2A, P2B ← ∅
7: Selected← ∅
8: while P1 ∪ P2A ∪ P2B = ∅ do
9: app(a)← {a ∈ At

i | pre(a) ⊆ s0, a is grounded, a /∈ Selected}
10: A′ ← constrain(app(a),Θ)
11: if app(a) = ∅ or ∀a ∈ A′, a ∈ Selected then
12: break
13: end if
14: Select a ∈ A′, Selected.add(a)
15: sj ← ϕW(s0, a)
16: for all l ∈ post(a) ∪ s0 ∪ sj , l is a positive literal do
17: if ∃l ∈ post(a) \ sj then
18: P1.add(l)
19: else if ∃l ∈ (sj \ s0) ∩ (sj \ post(a)) then
20: P2A.add(l)
21: else if ∃l ∈ (s0 \ sj) ∩ (s0 \ post(a)) then
22: P2B .add(l)
23: end if
24: end for
25: if P1 ∪ P2A ∪ P2B 6= ∅ then
26: return modify(a, P1, P2A, P2B ,Σt, sj , ϕ

W,Θ)
27: end if
28: s0 ← sj
29: end while
30: return create(Σt, s0, ϕ

W,Θ)

• A Type IIA anomaly occurs when the agent observes a positive literal not

in the previous state but is in the current state, not believed to be due to the

current action.

• A Type IIB anomaly occurs when the agent observes a positive literal that

was in the previous state is not present in the current state, not believed to be

due to the current action.

Algorithm 11.2 performs a classification of anomalies and assigns the literals

into three sets, each corresponding to an anomaly - P1, P2A and P2B. Returning to

our running example, the postconditions for the pickup action is post(pickup(cup)) =

{holding(cup)}. For each of the literals in the post(pickup(cup), we can determine

the anomaly sets (lines 16-23), as P1 = ∅,P2A = ∅,P2B = ∅.
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Algorithm 11.2 then iterates to the next action. The two applicable ac-

tions are now putdown(cup) and stack(cup, block). Let’s say the agent selected

stack(cup, block). Now, the postconditions are:

post(stack(cup, block)) = {on(cup, block), clear(cup), handempty}

However, an unexpected event occurs, which is the cup actually encloses the

block. The agent does not have a concept or sense for this notion and will thus have

to discover it.

s2 = {ontable(cup), clear(cup), handempty, ?clear(block), ?ontable(block),

visible(cup)}

We use “?” to signify an indeterminate predicate.3 For this stack action, in contrast

to the pickup action, the agent is going to catch the following anomalies (when

comparing states s2 with s1 against post(stack(cup, block)): P1 = {on(cup, block)},

P2A = {ontable(cup)}, and P2B = {visible(block)}

11.3.3 Modifying Action Definitions

After iterating through all the constrained actions, if there are any anomalies, Algo-

rithm 11.2 calls Algorithm 11.3 to modify these actions. If there are no anomalies,

it calls Algorithm 11.4 to consider inapplicable actions.

Algorithm 11.3 works through possible combinations of positive literals in

the various anomaly sets. For anomalies of Type I, it removes the literal from the

postconditions (line 10). For anomalies of Type IIA, it adds the literal to the pre-

condition and adds a negation to the precondition (lines 11-12). For anomalies of

Type IIB, it adds the literal to the precondition and its negation to the postcon-

ditions (lines 13-14). In our running example, the agent constructs a new action

a∗(cup, block) (variant of stack) and defines it as follows:

pre(a∗) = {holding(cup), clear(block), visible(block),¬ontable(cup)}

post(a∗) = {ontable(cup),¬holding(cup),¬clear(block),¬visible(block)}
3The agent, without additional knowledge, cannot know for sure if the block is still on the table

as it cannot perceive it.
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Algorithm 11.3 modify(a, P1, P2A, P2B,Σt, s0, ϕ
W,Θ)

1: Σt: Domain
2: s0: Start state (agent’s current state)
3: ϕW: oracle function
4: ρ: planner function
5: Θ: Set of exploration parameters
6: for all s1 ∈ 2P1 do
7: for all s2 ∈ 2P2A do
8: for all s3 ∈ 2P2B do
9: a′ ← a
10: pre(a′).add(l,∀l ∈ s3)
11: post(a′).add(l′ = ¬l,∀l ∈ s3)
12: pre(a′).add(l′ = ¬l,∀l ∈ s2)
13: post(a′).add(l,∀l ∈ s2)
14: post(a′).remove(s1)
15: if test(a′, ϕW) then
16: return a′ as a domain modification Σ∗u
17: end if
18: end for
19: end for
20: end for

Algorithm 11.4 create(Σt, s0, ϕ
W,Θ)

1: Σt: Domain
2: sk: Start state (agent’s current state)
3: ϕW: oracle function
4: ρ: planner function
5: Θ: Set of exploration parameters
6: notapp(A)← {a ∈ At

i | pre(a) 6⊆ s0}
7: A′ ← constrain(notapp(A),Θ)
8: for all a ∈ A′ do
9: for all l ∈ pre(a) do
10: a′ ← a
11: pre(a′).remove(l)
12: if test(a′, ϕW) then
13: return a′ as a domain modification Σ∗u
14: end if
15: end for
16: end for

Algorithm 11.3 then calls test(a′, ϕW) to evaluate the proposed modification

to the grounded action and attempt to generalize it. Informally, the test(a′, ϕW)

function is a condition checker, which performs a series of experiments to evaluate the

extent to which the modified action a′ satisfies the several properties: repeatability

(can a′ be repeated from the same state?), token-invariance (does a′ work with

different object tokens of the same type, e.g., different cups?), reversibility (can a′’s

pre and postconditions be reversed?).
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The agent can also make the action more compact by abstracting conjunctions

of anomalous literals (i.e., those from P1, P2A and P2B) into single predicates, via a

rule such as

φ(cup, block)← ontable(cup) ∧ ¬on(cup, block) ∧ ¬visible(block)

This derived definition φ of the concept of “enclosure” might not be an ex-

clusive one. For example, a transparent cup might not render the block invisible,

however, it will still be enclosed. Our definition of “enclosure” via φ(cup, block) is

still underdetermined (as is any concept learned inductively). For example, it cannot

distinguish “covered” from “contained” (the latter being possible even when the cup

is upright). Future work will explore how these concepts, discovered separately, can

be unified using techniques in generalized planning [LSAJJ16].

11.3.4 Discovering New Actions

Algorithm 11.4 is called (if no anomaly is found) to explore the space of action

possibilities that do not apply in the current state. It randomly relaxes preconditions

to make actions applicable. If, in fact, the newly created action can be executed, it

will be returned as an action modification that Algorithm 11.1 can use to solve the

problem PM .

Returning to our running example, consider the following variant with not

only abstract operators like stack, pickup, putdown and unstack in 4-Op Blocks

World, but also sub-actions like grasp, lift , moveAcross, setDown and release, and

sub-relations like grasped. Locations are represented with predicate at(Object, Location).

Note, decomposing actions to sub-actions and more generally exploring the space of

hierarchically specified actions is an open research questions with recent promis-

ing results [GCS19]. Thus, for example, the moveAcross(Object, Loc1, Loc2) action

is defined to have preconditions pickedup(Object) and at(Object, Loc1), and post-

condition at(Object, Loc2). Now, consider a problem in which the start state only

contains one block (and no cup) and the goal is to move the block from location-1

to location-2 without lifting it.

Upon exploration with Algorithms 11.1 and 11.2, the agent does not discover
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any anomalies. This is not surprising as there is only one block and a limited set

of actions. Consequently, no modifications are apparent. Algorithm 11.4 executes

existing inapplicable actions.4 Suppose the agent selects the moveAcross action and

removes the precondition pickedup to create a new action b∗ (which can be thought

of as a “slide” or “nudge” action). When tested, the agent will be able to discover

that the action sequence grasp, lift , moveAcross, setDown, and release has the

same set of postconditions as grasp, b∗, release, thereby solving the PM defined

earlier.

11.3.5 Generating New Constants

Consider a variant of Cups World (Fig. 11.1) in which the agent must move exactly

one (blue) of two blocks co-located at location l1. Consider an agent that knows the

actions cover and nudge discovered in the previous sections. Initial execution of the

plan will also result in illegally moving the red block.

11.3.5.1 Diagnose

As before, the agent diagnoses the problem by stepping through each of the actions

and identifying anomalies. It notices that covering the blue block also covers the

red block, a Type IIB anomaly. Upon correction, the original problem is turned

into a symbolic MacGyver problem. No modification or action creations discussed

earlier will help. Agent cannot solve this problem by learning from action traces

[AFP+18, GLP17] as no action trace will provide the needed knowledge. The agent

must explore the subsymbolic space.

11.3.5.2 Reason and Define New Goal

We propose that the agent reasons over its symbolic knowledge to determine key con-

straints that can limit the subsymbolic search: (1) which low-level (primitive) actions

to explore, (2) which parameters of these actions to vary, and (3) what is the termi-
4Note, the agent might need some set of practical and normative constraints, to limit what

actions it can and cannot create so as to prevent the agent from damaging itself or others.
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nating condition or goal of the subsymbolic search. The earliest point in time when a

Type IIB anomaly was spotted was after the performance of the cover action, when

the red block disappeared unexpectedly. We consider actions at and before this time

that might have led to the anomaly, namely, cover,move-across, lift , grasp as possi-

ble candidates and backtrack through them. The anomalous atom was visible(?x)

and so we consider those groundings of the atom among all possible groundings of

this atom that also match the desired criteria for the cover when the anomaly oc-

curred. Between the two blocks, there are eight possible groundings. However, we

only consider the two groundings in which the blue block is rendered invisible as

this is a requirement for us to be able to move the block without touching it: (1)

¬visible(b),¬visible(r) and (2) ¬visible(b), visible(r). We know from the initial at-

tempt that grounding #1 is not going to work. Thus, the agent adopts grounding

#2 as a new goal.

11.3.5.3 Exploration and Domain Update

The agent searches (we employ a straightforward binary search) through the sub-

symbolic space of cover by translating the cup at varying vertical distances and

observing whether the new goal is satisfied. If after some number of tries, the agent

does not succeed, it backtracks to the move-across action and translates the cup

along various horizontal positions. Crucially, for each position, the agent executes

not only the move-across action but also all subsequent actions until and including

cover. The agent discovers that translating the cup to approximately half way be-

tween locations l1 and l2 works. Our agent has thus far maintained a database of

symbolic locations keyed to location names and valued to the x, y, z coordinate in

space. The agent introduces a new location l1.5 into this database with its position.

Once introduced, this symbolic location is added into the symbolic domain and the

agent can execute its previous plan modified with the new location. Now, the agent

has not yet learned any properties associated with l1.5. However, performing the

sequence of actions cover, nudge and uncover, will provide the agent with an op-

portunity to learn that this new location is adjacent to both l1 and l2. Studying
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such incidental learning opportunities is the subject of future work.

Figure 11.1: Problem solving when symbolic-macgyvering fails. The agent must
explore an infinitely large subsymbolic space through exploration. We demonstrate
an approach in which symbolic reasoning can provide constraints for a subsymbolic
search over an action parameter space. The agent, capable of moving the blue block
(b) without touching it (original Cups World), is now prohibited from touching or
moving the red block (r). The agent learns, through reasoning, exploration, and
noticing anomalies that moving the cup across to a new location between l1 and l2
will solve this variant of Cups World.

Nudge Enclosure

Run # c t # c t

1 12 72 22 162

2 10 66 21 146

3 5 27 12 70

4 5 32 6 38

5 9 67 23 125

6 3 17 18 107

7 4 24 6 49

8 4 26 11 73

9 10 69 22 149

10 7 43 12 64

Avg 6.9 44.3 15.3 98.3

Table 11.1: Number of Oracle calls (c) and time (t) taken (in sec) to discovering
“nudge” and “enclosure” in Blocks World and Cups World. Trials performed by
a Fetch robot in simulation using algorithms integrated into the diarc cognitive
robotic architecture.
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11.4 Robot Integration and Experiments

There is currently no agreed-upon protocol for evaluating MacGyver Problems.

These are open-ended creative problems, for which evaluation is unsurprisingly quite

challenging. Nevertheless, we show a first robotic implementation of a MacGyver

agent and some initial experimental results in a 3D robotic simulation environment.

To integrate creative problem solving into a robotic system, we developed

several architectural components for performing certain key operations – (1) hy-

pothesis generation (goal and action decomposition, pre-/postcondition relaxation),

(2) action execution, planning, and testing protocols, and (3) sense-making (sen-

sor parsing, noticing anomalies). We built these components within two robotic

frameworks, each capable of maintaining symbolic knowledge of a planning domain

as well as mappings between the planning representations and low-level action and

relational primitives.

We implemented these components in the Agent Development Environment

(ADE), which is a robot-agnostic middleware for cognitive architectures [AS06]. We

also implemented the approach in ROS, an open-source robotic framework, with

ROSPlan [QCG+09, CFL+15], a framework for embedding a generic planner in a

ROS system. We selected off-the-shelf classical planners for the planner ρ, and

Gazebo (a ROS-based 3D physics simulation environment) for our oracle ϕW. We

implemented the test(a′, ϕW) within this framework in a limited way allowing agents

to repeat actions.5

We selected the Fetch Robot6 and attempted to characterize (at least roughly)

the quality of performance on our running example (Cups World) over several runs

in simulation both for discovering enclosure (Sections 11.3.2 and 11.3.3) as well as

creating the nudge action 11.3.4. All simulations and experiments were run on a

desktop with 12 cores, each an Intel R© CoreTM i7-5820K 3.30GHz processor and 31.3

GB of RAM. The results in Table 11.1 show that the robot was indeed able to learn

the missing actions and solve MacGyver Problems in a reasonable amount of time.
5We will release our ROS-based code on Github.
6Robotic Platform by https://fetchrobotics.com/robotics-platforms/ with ROS bindings.
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Since there are no general heuristics for solving these problems, we can only attempt

to find and characterize heuristics that cover large classes of problems. Doing so

will require a systemic exploration based on the framework and base architecture

provided in this chapter.

11.5 Other Related Work

This work overlaps with many subfields in AI. First, it builds on recent efforts by

Sarathy and Scheutz in formalizing MacGyver Problems [SS18b]. While describing

a possible solution strategy using the Cups World domain, they did not present

algorithms for solving MacGyver problems. A related field of contingent planning

focuses on allowing an agent to plan online as it senses an environment [KS16a].

Some have proposed algorithms for planning with incomplete information, whereby

conditional plans have to be developed [BG00, AFP+18]. However, in both these

approaches, the set of possible states or belief states are assumed to be known to

the agent, which is not the case in MacGyver Problems. Recent work in using deep

neural networks have shown promise in learning planning domain models from images

[AF18, APA+18]. However, even if the agent is able to learn the planning domain,

a challenge still remains as to how it can revise these representations when planning

fails, as is required for MacGyver Problems. Some work in belief revision [Her14]

might be useful here, and we have ourselves employed notions of goal reformulation

in our approach.

Integrated approaches for growing a symbolic representations with what the

agent can learn from exploring the subsymbolic space shares similarities with our

approach to learning new constants [KLP13, KKLP14, SFR+14, KKLP18]. While

these approaches are not configured to solve MacGyver problems, they nonetheless

provide promising techniques to enhance our subsymbolic search capabilities.

Reinforcement learning offers a helpful way to model exploration and learning.

Two promising approaches relevant to creative problem solving are (1) curiosity-

driven or intrinsically motivated RL, and (2) hierarchical RL. The first approach
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attempts to handle domains were reward functions (even long range ones) are not

readily available [CBS05, HS17]. There is a parallel here to MacGyver Problems

which is the lack of reward. However, those RL methods still do not allow an

agent to modify its own action parameters. Hierarchical RL and its use of “options”

appears promising for representing meta-level strategies [SPS99, KB09, KKLP18].

Segovia-Aguas et al. [[SAFMJ16]] proposed a combined planning and RL approach

for learning low-level action policies. However, this work assumes a complete high-

level model, which we do not have for MacGyver problems.

The notion of MacGyvering has been explored by researchers in robotics and

tool creation [NSZC19], demonstrating techniques for learning novel object affor-

dances through interaction and exploration. While similar in spirit to the proposed

approach, these approaches are quite different in that they are focused on solving

specific geometric problems of tool construction in the robotic domain. In con-

trast, the proposed approach is aimed at a higher level of abstraction, generality and

domain-independence.

11.6 Open Problems

We have presented an approach to creative problem solving that actively involves

environmental exploration, similar to real-world human problem solving [Sar18b].

Indeed, by definition, MacGyver Problems require such exploration, without which

the planning task is unsolvable. In addition, we computationalize ideas of con-

straint relaxation, goal decomposition, and anomaly detection from psychology and

insight problem solving literature [LJ88, Ohl92]. As noted earlier, there are no do-

main general heuristics or even heuristic discovery algorithms available for MacGyver

Problems. Thus, an agent solving such problems must rely on some form of organic

exploration, observation and domain transformation in order to build a path from

the start state to a goal.

The proposed approach will guarantee domain modifications if they are per-

mitted in the environment in which the agent exists. One major challenge is the
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possibility of entering dead ends and traps. While that is possible, the algorithm is

inherently designed to create new actions and dynamically adapt its domain model,

which in turn has the potential for it to discover a path out of a trap. We have yet

to evaluate this capability, but plan to do so in future work.

These are one of many important steps needed for designing resilient and au-

tonomous agents. There are several limitations to the proposed approach, a signifi-

cant one being computational complexity. Iterating through various actions and pos-

sible arrangement of pre and postconditions is at best of exponential complexity, no

better than classical planning itself. However, meta-heuristics on the allowed types

of actions might help limit this search space - e.g, through the use of constrain(A,Θ)

function mentioned in the algorithms. One example of a meta-heuristic might be:

when attempting to solve a problem involving objects, it is best to explore actions

that use and/or manipulate these objects. In general, this question of smart explo-

ration could interface with the growing body of literature in exploration strategies

for reinforcement learning. We propose a model for using symbolic reasoning to help

constrain subsymbolic exploration. It is still an open question as to whether such

an approach could help an agent make its exploration and learning more sample

efficient. If the agent used a collection of heuristics to simplify the search space,

there are many open questions as to the space and nature of these heuristics.

Although we have discussed MacGyver problems as single isolated prob-

lems, in reality, the agent might encounter them during the course of a curriculum

[NPL+20]. In fact, the agent may encounter a training regimen specifically designed

with increasingly difficult macgyver problems. In such cases, there are open ques-

tions about how the agent can improve its performance between problems. Can it

learn general problem solving techniques applicable not just across different tasks

in the same domain, but potentially different but overlapping domains? The agent

might need to build meta-abstractions over its current domain abstractions to cap-

ture general properties of domain transformations while solving particular MacGyver

problems. By scaffolding the agent’s learning in a systematic, incremental curricu-

lum, it may be possible to make this process of building meta-abstractions (i.e., those
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capturing problem-solving heuristics) more tractable. An example of such a curricu-

lum could involve teaching an agent about finding hidden objects. If the agent solves

a problem involving a cup enclosing another object, it might be able to learn that

cups can enclose things (i.e., a particular affordance of a particular class of objects).

But, it might also learn that objects that are not visible could be hidden by other

objects and can be discovered by moving objects around (i.e., a meta-level problem

solving technique).

11.7 Conclusion

Future AI systems will need to able to adapt their own mental model of the envi-

ronment dynamically as they explore an ever-changing world. They must be able to

extend it with limited data and without any external reward signal or supervision.

In this chapter, we propose the first steps for designing such creative problem-solving

systems. Specifically, we provide an approach for solving a class of problems, called

MacGyver Problems, which are seemingly impossible at first, but ultimately solv-

able through domain modifications. We show how symbolic planning can be im-

proved through exploration and anomaly detection, and how subsymbolic planning

can be guided by high-level reasoning. The potential for problem-solving through

self-guided exploration and discovery is great. Not only can AI systems solve difficult

problems in isolation, but they can work in teams to explore different parts of the

problem-space and accelerate problem-solving.
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Chapter 12

Conclusions

In the introduction, I began by posing the following question: what would it take for

an artificial intelligence (AI) agent to appreciate the humor in a classic Harry Bliss

New Yorker cartoon?. Throughout this dissertation, I have endeavored to argue that

extracting statistical patterns from data, by itself is not sufficient for developing AI

systems that can understand human dialogue, use and manipulate objects, abide

by our human norms or even think creatively, let alone understand and leverage all

the hidden assumptions in the cartoon. What is needed is the ability to represent

(and reason with) assumptions about the physical, cognitive and social aspects of

our world.

Making and breaking these kinds of assumptions is crucial to human in-

telligence and creativity. They fill gaps in our knowledge and resolve ambiguities

in an otherwise endless stream of perceptual information. When broken, they allow

us to restructure our knowledge in new ways and discover previously unknown con-

nections. Handling assumptions is required not only for understanding humor, but

making sense of most everyday experiences and interactions. I contend that future

AI systems must also be able to reason with implicit assumptions if they are to

work effectively with humans.

The problem, however, is that many of the necessary common sense assump-

tions are elusive and remain hidden in our collective minds. It is also unclear what

kind of reasoning is needed to effectively use these assumptions while thinking.

333



I have sought to uncover the computational nature of these hidden assump-

tions and how we make and break them. My approach has been to (1) identify AI

domains that can benefit from reasoning with hidden knowledge, (2) formalize the

types of knowledge and reasoning needed within these domains, (3) develop efficient

algorithms for extracting the hidden assumptions, (4) develop cognitive architectures

for reasoning with these assumptions, and (5) design studies to validate the effective-

ness of new methods in practical settings. Developing effective approaches requires

bringing together many disciplines covering areas of knowledge representation and

reasoning, machine learning, natural language processing, uncertainty processing,

human-robot interaction, as well as cognitive science, social psychology and ethics.

Below, I discuss my contributions and outline future directions of research.

12.1 Language Understanding

12.1.1 Using hidden assumptions for resolving pronouns

Consider the discourse: “Smith entered the office of his boss. He was nervous.”1 We

might assign the “he” pronoun in the second sentence to Smith, assuming naturally

that he is nervous because he is getting reprimanded, an interpretation that makes

sense. However, if our next sentence reads: “After all, he did not want to lose his

best employee,” we immediately revise our prior conclusion. This is an example of

nonmonotonic reasoning and is pervasive in human language understanding. To

handle such sentences, I introduced a new class of problems, which requires track-

ing state changes as language unfolds and reasoning about possible worlds within

these intermediate states [SS19b]. To resolve pronouns of this form, I proposed a

multi-reasoner approach that employs Answer Set Programming, a declarative pro-

gramming paradigm that permits nonmonotonic reasoning. I showed that current

state of the art neural systems fail to correctly resolve even very seemingly simple

discourses such as “Pick up block-A. Put it on block-B. Pick up block-C. Put it on

block-B.”
1This example is courtesy Grigris Antoniou.
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12.1.2 Using hidden assumptions for understanding speech acts

More recently, I extended the same architecture to resolving indirect speech acts

(ISAs). These are utterances whose meaning might appear somewhat inconsistent

with the surface form. For example, the question “Can you describe the shark?”

might be requesting a shark description, and not asking the listener for a yes or no

answer. Thus, the utterance has an indirect meaning of a request rather than an ask

or a question. These are common politeness norms in human communication, and

AI dialog systems must also be able to handle them correctly. However, much like

the pronoun resolution problem mentioned earlier, ISAs also require nonmonotonic

reasoning. I developed such a model that includes many domain-independent default

rules and complex nonmonotonic reasoning patterns. I am currently developing a

more challenging corpora for evaluating the model and interpreting ISAs in different

contexts.

12.1.3 Future work

Like pronouns and ISAs, there are many linguistic phenomena (e.g., word sense and

presuppositions) that are fraught with ambiguity, and resolving which requires non-

monotonic reasoning with hidden knowledge. In future work, it will be fruitful to

develop language datasets that can be used to jointly test and compare neural-based

as well as logic-based approaches. These datasets can then be used to evaluate the

design of architectures for simultaneously resolving several forms of linguistic ambi-

guities, a capability offered by my multi-reasoner approach. Morevoer, the reasoning

and inference machinery that comes with logic-based approaches can be used to ex-

tract hidden knowledge from text (e.g., online instructional datasets like WikiHow)

as well as neural language models (e.g., BERT). Many real-world domains, like legal

reasoning, in which extracting the hidden knowledge is particularly challenging even

for humans, could benefit from integrating logical-reasoning-based machinery. In

this domain, norm-based and nonmonotonic reasoning systems can help us evaluate

the strength of legal arguments by extracting hidden assumptions.
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It is desirable to design a unified architecture capable of simultaneously re-

solving different ambiguities at different levels of language understanding (word,

sentence, discourse etc.). “Understanding” then is a matter of choosing the inter-

pretation that makes the most sense across a variety of hidden assumptions and

background knowledge.

12.2 Common Sense Assumptions about Social Norms

One category of hidden common sense assumptions are those associated with human

social and moral norms. Norms play an important role in society in maintaining

order and ensuring cooperation and coordination. However, norms are challenging

to computationalize as they are highly context-dependent, culture-dependent, and

dynamic. Here, I will discuss my contributions in modeling human norm acquisition

and building AI agent architectures for norm learning and reasoning.

12.2.1 Social Norms Associated with Objects and Interactive Be-

haviors

Norms for object affordances: There is a tight connection between an object’s

physical appearance and the triggering of action possibilities in our minds. This

allows us to quickly choose and manipulate an object correctly and effectively. When

we see a knife, we also see possibilities for how and where we can grasp it. While

visual and geometric features of objects might serve as useful cues for inferring basic

actions like grasp, push, and pull, they do not tell us the complete story. For example,

an antique knife behind a glass case in a museum does not allow for the same sort of

grasping action. Other contextual aspects combined with our common sense social

norms of the etiquette in a museum allow us to infer correctly. I introduced the

formal notion of “cognitive affordances”2 to capture these types of more complex

normatively-charged action possibilities [SS16c, SS15b]. I proposed a probabilistic

logic-based formalism for reasoning about social norms associated with tools in a
2 “Affordances” generally represent the relationship between an object and the set of actions an

agent can perform on or with the object (e.g., a mug has a grasp affordance).
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kitchen domain. I integrated this formalism into a cognitive robotic architecture

that allowed for evaluating the performance on a PR2 robot [SS16d, SS16a]. The

robot was able to consider implicit social norms associated with handling sharp

objects. It reasoned that when using a knife, it should grasp the handle, whereas

when handing the knife over to someone, it should grasp the blade, allowing for safe

transfer.

Consent norms for robots: Certain normative assumptions extend beyond

specific objects or domains and permeate all forms of interaction. One such example

is the notion of “implicit consent,” the idea that certain interactive behaviors

demand prior implicit permissions. Consent (or lack thereof) can alter the normative

valence of a situation, turning appropriate behaviors into inappropriate ones. I

turned to centuries-old legal precedent on consent in tort law and suggested how these

established legal principles can guide robotics researchers while designing ethical

behaviors and conducting usability studies [SAS19].

12.2.2 Generalized Norm Representation and Learning

Learning norms from language: Where do these social norm assumptions come

from? One source is natural language instruction. I designed algorithms that allow

a robot to learn, from natural language instruction received from single or multiple

speakers, the social rules associated with handling knives [SOKS18]. Not all norms

are learned from language, however. Many are learned simply from observation.

Observing “norms” is tricky, as what one is observing is often not a norm per se, but

simply the performance (or non-performance) of an underlying behavior.

Modeling human norm learning: I explored the nature of human norms

and their cognitive representations [Sar19]. Crucially, I showed that these mental

representations actually encode contextual aspects and inherently capture epistemic

uncertainty [SSA+17]. I performed several human-subject studies and developed a

preliminary computational model for human norm learning under uncertainty. The

model was built on a logical framework and coupled with Dempster-Shafer theory

(DST), a generalization of the Bayesian approach to learning under uncertainty. I
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extended this work to enable agents to represent their uncertainty over contexts as

well [SSM17].

Learning norms at scale: A limitation of DST is its computational com-

plexity. I developed a set of generalized learning algorithms for reducing this com-

plexity. I applied these algorithms to large-scale agent-based simulations during

which an agent learned several norms from observing hundreds of other agents. This

work extended the current literature on multi-agent norm learning by showing how

norms can be learned under more realistic conditions where the learning is influenced

by incomplete, imperfect and unreliable data.

12.2.3 Future work

There are many opportunities for future work in better understanding how social

norms can be incorporated into AI systems. One direction is to apply normative

principles associated with consent in specific domains where consent can influence

robot behaviors. For example, it would be useful to identify the visual and linguistic

consent cues suggestive of object ownership norms. Knowing when it is appropri-

ate to borrow objects and tools is important for robots engaged in collaborative

teamwork. Robotic architectures capable of detecting these cues and adjusting their

behaviors to conform with these norms could be a fruitful direction of future research.

Exploring how machines can learn in open-world settings under uncertainty

is another potentially rich area of future research. I discussed the use of a Dempster-

Shafer theory (DST) in connection with learning norms under uncertainty. An ad-

vantage of DST is that it has the mathematical ingredients for “open-world learn-

ing,” in which the space of possible behaviors (over which probability distributions

are learned) is unknown at the start. An agent equipped with this capacity will be

able to assimilate and establish the normativity of new behaviors on the fly while

learning. Open-world agent architectures and algorithms can be designed that apply

these powerful mathematical ingredients in DST and allow agents to learn from a

state of complete ignorance, not only of the normative status of behaviors, but of

the knowledge of the behaviors themselves.
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12.3 Breaking Assumptions: From Common Sense to

Creativity

I have discussed the importance of common sense assumptions as gap fillers that

allow us to make sense of situations. Sometimes, these common sense gap filling

assumptions can misguide our perception of the world. Illusionists and magicians

frequently use this aspect of human cognition when designing tricks. Cartoonists,

like Harry Bliss, also do so with drawings and text that seem incongruent with one

another, but when combined suggest a better comic model. Human cognition is

flexible and can break existing assumptions and adopt new ones in the face of new

knowledge.

12.3.1 Formalizing creative problem solving

This occurs frequently in the real world, whether it is a mundane task of discovering

a new affordance for an object (e.g., using a chair to hold open a door) or whether

it is the historic task of a brilliant scientist proposing a paradigm shifting theory.

In all these cases, we are (and can be) made to rethink our common sense assump-

tions and reframe them as needed. Undoubtedly, this is an important skill for AI

systems as well, especially if they are to assist us with some of humanity’s toughest

challenges requiring major paradigm shifts. I recently proposed a class of problems,

dubbed “MacGyver Problems,” which are designed to seem initially unsolvable

for an agent, but ones that an agent can conceivably solve by interacting with its

environment [SS18c]. I have also begun developing algorithms for solving certain

limited classes of MacGyver problems (Chapter 11). MacGyver problems closely

parallel insight problem solving, an area that has been studied by psychologists for

over a century. I proposed a new cognitive model for creative problem solving that

extends prior work on insight problem solving and is supported by neural evidence

[Sar18b].
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12.3.2 Future work

Extend the theoretical framework for MacGyver problems by defining complexity

classes and designing evaluation frameworks for testing new solution algorithms is

an exciting avenue for research into creative AI systems. The theoretical framework

offers us the ability to systematize the process of generating novel stimuli for studying

the neural basis of insight problem solving as well, an area ripe for collaboration with

neuroscientists.

12.4 In Conclusion

At the core of the process of making and breaking assumptions is the ability to

continually assess and make sense of the world, resolving ambiguity to favor expla-

nations that make the most sense, and recognizing anomalies as possible avenues for

creative exploration. Agents designed with the ability for sense-making are likely to

be more robust, resilient, resourceful, trustworthy and creative.
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