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Abstract—The concept of “affordance” refers to the
relationship between human perceivers and aspects of their
environment. Being able to infer affordances is central to com-
monsense reasoning, tool use and creative problem solving in
artificial agents. Existing approaches to inferring affordances
have focused on functional aspects, relying on either static ontolo-
gies or statistical formalisms to extract relationships between
physical features of objects, actions, and the corresponding effects
of their interaction. These approaches do not provide flexibility
with which to reason about affordances in the open world, where
affordances are influenced by changing context, social norms, his-
torical precedence, and uncertainty. We develop a computational
framework comprising a probabilistic rules-based logical repre-
sentation coupled with a computational architecture (cognitive
affordances logically expressed) to reason about affordances in
a more general manner than described in the existing litera-
ture. Our computational architecture allows robotic agents to
make deductive and abductive inferences about functional and
social affordances, collectively and dynamically, thereby allowing
the agent to adapt to changing conditions. We demonstrate our
approach with experiments, and show that an agent can suc-
cessfully reason through situations that involve a tight interplay
between various social and functional norms.

Index Terms—Affordances, autonomous mental development,
cognitive system and development, cognitive robotics, embodied
intelligence, robots with development and learning skills, visual
attention, visual perception.

I. INTRODUCTION

NATURAL human activities involve using and
manipulating objects around us and continuously

reasoning about our environment. Consider the example of
cooking activities in a restaurant kitchen: these activities
require cutting vegetables, monitoring the stove, and keeping
tools and utensils clean, all while ensuring orders are prepared
and served in a coordinated and timely manner. Not only
are team members able to recognize various objects around
the kitchen, but they know what to do with these objects,
how to use them appropriately, how to help others use them
(i.e., they can infer and act on complex object affordances).
That is, the kitchen team is using these affordances to reason
about the task at hand. Sometimes these types of activities
involve standard reasoning tasks, like choosing a clean knife
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for cutting a tomato. Other times, these activities involve
more creative reasoning tasks like solving puzzles and finding
novel uses for objects, like using a dishcloth as an oven mitt.

Reasoning and using objects in this manner is a highly desir-
able skill for robotic agents as well. Helper robots will be
critical in many application domains: helping our elderly and
disabled in assisted living facilities, conducting search-and-
rescue missions in unforgiving terrain to save human lives,
assisting our astronauts on the space station, or even moni-
toring our surroundings to keep us safe from national security
threats. In these critical sectors it is highly beneficial to endow
robots with the ability to find creative ways to use and manip-
ulate objects, especially when there is minimal and uncertain
information. Unfortunately, although today’s robots are pro-
ficient at recognizing object features, they are less skilled at
recognizing what can be done with these objects.

In this paper, we present a novel computational framework
based on Dempster-Shafer (DS) theory [1] and “uncertain
logic” for inferring object affordances. Our framework com-
prises a logic-based representational format and inference
mechanism coupled with a nascent computational architecture,
cognitive affordances logically expressed (CALyX), to reason
about not only functional and physical features of objects but
also social, historical, aesthetic, and ethical aspects that we
naturally consider when perceiving objects—generally, “cog-
nitive affordances.” For example, we know that dirty knives are
typically not used for cutting vegetables, even though they can
functionally accomplish the task. As such we will demonstrate,
with examples, that with our proposed approach a robot will
be able to reason about these kinds of complicated affordances
in a unified, systematic, and effective manner.

II. PAST WORK

A. General Background

Gibson [2] introduced the notion of “affordance” to account
for human visual perception. He considered affordances as
latent properties of the environment that exists in the pres-
ence of animals and humans. His general description captured
the deeply interconnected relationship between an animal and
its environment in ecological terms. Since then, the idea of
affordances has been adopted across a variety of disciplines
including psychology, computer science, artificial intelligence,
and human-computer design. However, despite this exten-
sive adoption, the ontological and representational aspects of
affordances have been the subject of rigorous debate.
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Two contested questions focused on were what affordances
are and where they are supposed to live? Do they belong to
the environment, to the agent, or to the agent-environment
system? Turvey [3] proposed that affordances are dispositional
properties of the environment and actualized by the actions of
the agent. Reed [4] proposed a more radical theory stating
that affordances, although disposed in the environment, are a
scarce resource and actually play a role in regulating human
adaptive behavior and natural selection. Norman [5] proposed
two different kinds of affordances: 1) a real affordance that is
in the environment and 2) a perceived affordance that is in the
agent’s mind.

Stoffregen [6] argued that affordances do not belong to
either the agent or the environment, but are instead emergent
properties of an agent-environment system. Several theo-
ries also explored explicit representational formats including
describing affordances as relations connecting the abilities of
the agent with environmental features [7], and further connect-
ing the effects of agent behaviors on the course of events [8], or
as relations connecting environmental attributes in overlapping
conceptual spaces or regions [9], [10]. Scarantino [11] claimed
that affordances are not only relational but also conditional.
Specifically, she argued that affordances are conditional upon
various triggering conditions and related to the agent’s set of
potential abilities.

A number of these and other theories focused primarily
on functional aspects of affordances [12], [13]. There has
also been some limited work in introducing social consider-
ations into an affordance framework. Schmidt [14] argued to
extend Scarantino’s theory of conditional and relative nature
of affordance to include the idea of social affordances. Work
by Kim et al. [15] in the particular space of cognitive robotics
and object handover considered social etiquette and norms as
well [16].

Using and manipulating objects involves not only functional
and physical aspects of objects, but other features including
social conventions that govern the object’s use, aesthetic con-
siderations that limit what can and cannot be done with an
object, ethical factors that guide moral action, and historical
precedence that influences the designed purpose and intent for
the objects. An affordance inference framework must allow for
a broad definition of affordance, which we refer to as “cog-
nitive affordance,” one that accounts for functional as well
as nonfunctional aspects and must be adaptable to allow for
continuous changes to and evolution of these aspects over
time. Some of the above-mentioned theories and representa-
tions are limited in their ability to reason about affordances
more holistically and contextually.

In the next section, we will describe past approaches to
reasoning with affordances as used in cognitive robotics.
These approaches adopt some of the more conceptual theo-
ries mentioned above, e.g., those by [8], [10], [15], and [16]
and implement them in computational and robotic systems.
Discussing these approaches allows us to more specifically
place our own contribution in the context of past work.

B. Affordances in Cognitive Robotics

In cognitive robotics, there have primarily been two types
of approaches to representing, inferring, and reasoning with

affordances: 1) approaches based on statistical and machine
learning formalisms; and 2) approaches based on ontolog-
ical formalisms. These are very powerful approaches and
have shown substantial benefits to robotic cognition. However,
as we will discuss, these approaches are limited both rep-
resentationally and architecturally. Specifically, they do not
demonstrate flexible representational formats to account for
social and other nonfunctional aspects of affordances, they do
not allow for contextual reasoning, and they do not address
uncertainty in perception and beliefs. These approaches are
also limited architecturally because they mostly only involve
bottom-up processing of sensory (mostly visual) information
and thus do not allow for much top-down processing of sen-
sory information, which is necessary for a more complete
account of affordance perception.

Steedman [17] used linear dynamic event calculus to for-
malize the relationship between objects and their affordances.
More recently, work by Abel et al. [18] focused on using
Markov decision processes to directly model affordances as
mappings between a set of preconditions and goal states,
to action possibilities. Mastrogiovanni et al. [9], [10] have
developed a framework, using self-organizing neural maps,
for action selection and functional representation of every-
day objects, places and actions in terms of affordances and
capabilities, as regions in a proper metric space.

The strength of these works lies in their joint model-
ing of affordances with the problem of planning and action
sequencing. It allows for not just reasoning about actions, but
also implementing action sequences that then allow for new
affordances to emerge. However, while affordance perception
involves action selection from a choice of action capabilities,
its inference has broader applicability than just for planning.
Affordance inference is important to other cognitive processes
involved in commonsense reasoning, natural language expla-
nations, and general environmental sense-making. We believe
there is a benefit to representing and reasoning with affor-
dances in a manner that disentangles it from planning, but still
allowing for leveraging the extensive advances in the planning
literature.

Montesano et al. [19], [20] have developed statistically-
inspired causal models of affordance using Bayesian networks
to formalize the relationship between object features, actions,
and effects. Several others have modeled affordances as a rela-
tionship between action, object, and effect [21]–[24]. A num-
ber of computational and robotic systems have also emerged
to tackle various sub-problems relating to robotic affordances
such as object grasping and handover [23], [25], [26].

The strengths of these works lies in their underlying model
of affordances per Sahin’s approach [8] of relating objects,
actions, and the effects, allowing for a close relationship with
planning. But here too, inference of affordances is not separate
from specific planning tasks and, therefore, is not applied more
generally.

A few researchers have explored ontology-based
approaches to represent functional affordances. For example,
Varadarajan et al. [27], [28] have developed a detailed
knowledge-ontology based on conceptual, functional and
part properties of objects, and then used a combination of
detection and query matching algorithms to pinpoint the
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affordances for objects. While being able to query an affor-
dance knowledge-base is helpful from a deductive standpoint,
this approach is limited in its flexibility for accounting for
contextual shifts, and changing social norms.

Moreover, the focus on much of the affordance work
in cognitive robotics is on functional affordances, and so
there is often no distinction provided between a hammer
in a person’s toolbox and a decorative hammer on display
at the museum, both of which are functionally equiva-
lent, but engender entirely different nonfunctional affor-
dances. The social affordances associated with interacting
with a museum object are vastly different from the social
affordances of interacting with a hammer in a personal
toolbox.

Shu et al. [29] have recently presented a framework for rea-
soning about social affordances and provide a system that can
act in social scenarios like handshaking, helping a person stand
up, high-fiving, and handing over objects. While Shu et al. [29]
is reasoning about affordances in social interactions, the under-
lying affordance model is still largely devoid of contextual
reasoning, and focused more on physical geometries of objects
in these scenarios (in this case skeletal geometries). However,
such physical aspects do not account for the contextual infor-
mation that is not perceptual (e.g., high-fiving a friend versus
a refraining from high-fiving an enemy) and is also subject to
change.

Thus more generally, despite these past efforts, affordance
representation faces many challenges that have not been over-
come in the previous work. Specifically, past approaches fail
to provide flexibility with which to reason about affordances
in the open world, where they are influenced by changing con-
text, social norms, historical precedence, and uncertainty. For
example, none of the current approaches can systematically
infer that coffee mugs afford grasping and drinking, while
also simultaneously affording serving as a paperweight or
cupholder, or depending on the context, as family heirloom not
meant to be used at all. We argue that inferences of this sort are
different from sole high-level reasoning or planning processes,
for they require a continuous interplay between low-level sen-
sory systems and high-level cognitive systems and between
bottom-up (sensory mechanisms to higher-level cognition) and
top-down processing (higher-level cognition to sensory mech-
anisms) of information in these systems. Critically, cognitive
affordance representation and reasoning is a separate cogni-
tive process in its own right and deserves its own architectural
framework and inference machinery (separate from high-
level reasoning and planning or low-level feature detection)
that can then later be tied together with suitable percep-
tual and planning and reasoning frameworks. This is not to
say that affordances are not influenced by perception, plan-
ning, and reasoning—they are—but affordance-based reason-
ing is fully explained by and thus not subsumed within these
processes.

Next, we present an architecture for reasoning about affor-
dances that has components distinct from perceptual processes
(e.g., vision and haptics) and from action processes (e.g.,
planning and natural language interaction). Our framework
enables reasoning about higher-level affordances that rely on

Fig. 1. Context-sensitive cognitive affordance model.

cognition and contextual reasoning separately from perception
and action.

III. COMPUTATIONAL COGNITIVE

AFFORDANCE FRAMEWORK

The proposed computational cognitive affordance frame-
work consists of: 1) a logic-based affordance representation
and 2) a computational architecture (CALyX) that is context-
sensitive and furthermore allows for top-down constraints on
visual perception of the environment. Note that the proposed
CALyX architecture is distinct from a (low-level) vision sys-
tems even though affordance reasoning can interface with it.
Rather, the affordance representations used in CALyX are
agnostic to the originating modality of the percepts (e.g.,
vision, haptics, natural language, etc.), allowing for reasoning
at a higher than sensory-level (the sensory-level is sometimes
referred to as detection in ecological psychology). Different
from mere sensory processing of affordances, the higher-level
representations and reasoning processes take into account per-
ceptual, task-based, and other context as well as relevant
mental states of the agent such as beliefs, intentions, goals,
and desires.

A. Logic-Based Representation

We propose a novel representational format for cognitive
affordances, illustrated in Fig. 1, in which an object’s affor-
dance (A) and its perceived features (F) depend on the context
(C) [30]. We use DS theory [1]—an uncertainty process-
ing framework often interpreted as a generalization of the
Bayesian framework—for inferring affordance (A) from object
features (F) in contexts (C). More specifically, the proposed
cognitive affordance model consists of four parts: 1) a set
of perceivable object features (F); 2) a set of context states
(C); 3) a set of object affordances (A); and 4) a set of “affor-
dance rules” (R) connecting object features and context states
to applicable affordances which take the overall form

r :≡ f ∧ c =⇒ [α,β]a

with f ∈ F, c ∈ C, a ∈ A, r ∈ R, and [α, β] ⊆ [0, 1]. Here, the
confidence interval [α, β] is intended to capture the uncertainty
associated with the affordance rule r such that if α = β = 1
the rule is logically true, while α = 0 and β = 1 assign
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Fig. 2. Computational architecture (CALyX). We depict our contribution in
bold solid lines.

maximum uncertainty to the rule. Rules can then be applied
for a given feature percept f in given context c to obtain the
implied affordance a under uncertainty about f , c, and the
extent to which they imply the presence of a.

We have previously shown that these types of rules are very
versatile and that we can employ “DS-theoretic modus ponens”
to make uncertain deductive and abductive inferences [31].
Most critically, these rules allow us to address representational
challenges with Bayesian models where P(A|F,C) needs to
be inferred by way of P(F|A,C), P(A|C), and P(C) when we
often have no practical way of obtaining the necessary prob-
ability distributions for all the affordances for an object. We
will next provide an overview of our proposed computational
architecture, which we will then use in combination with the
above mathematical model to reason through two situations,
each involving a tight interplay between social and functional
affordances.

B. Computational Architecture (CALyX)—Overview

1) Introduction: We now present the computational CALyX
architecture (Fig. 2) for perceiving and reasoning about cog-
nitive affordances in a unified manner. CALyX has two main
components: 1) an affordance reasoning component (ARC)
for performing logic-based inferences of cognitive affordances
and 2) a perceptual semantics and attention control compo-
nent (PAC) for directing perception in a top-down manner and
semantically analyzing perceptual information in a bottom-up
manner. In addition, CALyX has two supporting memories:
1) long-term memory (LTM) and 2) working memory (WM),
for storing and updating logical affordance rules and related
uncertainties. These components work closely with sensory
and perceptual systems (e.g., vision) and other components
in a cognitive architecture to coordinate perceptual and action
processing.

We will focus on the main components noted above and
briefly touch upon other cognitive components as and when
needed. It is important to note here that CALyX is only a part
of a larger cognitive architecture and as such we do not expect

it to cover other cognitive subsystems (e.g., those for plan-
ning or natural language processing) or provide an account
for all manner of cognitive function. Instead, we focus on
affordance perception and inference and note that CALyX
serves as a intermediary subsystem linking lower level percep-
tual subsystems (e.g., vision, motor control, and haptics) with
higher-level belief, planning, and goal management systems to
facilitate top-down and bottom-up processing in the larger cog-
nitive architecture (e.g., the DIARC architecture within which
CALyX was developed [32]).

2) Cognitive Cycle: In each cognitive cycle, ARC selects
applicable rules from LTM and populates WM. Once the rules
are in WM, both PAC as well as ARC use these rules as
the basis for perception and inference. More specifically, PAC
directs low-level perceptual systems like vision to perform
visual searches in a focused manner only looking to deter-
mine beliefs for the specific perceptual features, F, relevant
to the applicable rules in WM. This is a top-down attentional
strategy that helps the robot focus its senses on relevant parts
of the environment given the rules in the WM while ignor-
ing others. ARC performs DS-theoretic affordance inference
on the rules in WM using beliefs about the relevant percep-
tual features from PAC and beliefs about contexts provided by
other parts of the cognitive architecture. The outcome of the
inference process is the generation of truth values of various
affordances specified in WM and their associated uncertainty
intervals, which are then used by the rest of the cognitive
architecture for planning, reasoning, and sense-making tasks.

3) Memory Management and Context-Sensitivity: In any
given situation the robot might be subject to a set of over-
lapping contexts. For example, in a situation in which a robot
is a kitchen helper, it might be subject to a context that refers
to its role as a helper-robot. Simultaneously, the robot may
also be in a more specific context that refers to a particular
task that it must perform, for example, the task of handing over
a knife to the human chef. This set of contextual aspects, C,
collectively constitutes the agent’s situation. As noted earlier,
contexts may often not be perceivable, containing nonperceiv-
able aspects of the task context and environment as well as
the agent’s own belief system. The fact that the agent is a
kitchen helper, for example, is not necessarily perceivable by
simply visually scanning the environment. Information about
the robot’s role, beliefs, desires and intentions may be pro-
vided by other high-level processing components in the robot’s
cognitive architecture. Thus, contextual aspects represent those
descriptors of the situation which can be nonphysical and even
abstract.

This contextual information is passed into CALyX from
other parts of the cognitive architecture and received by
a memory management subcomponent of ARC. The mem-
ory management subcomponent searches through all available
affordance rules of the form specified above in the agent’s
LTM and identifies rules that contain contexts that match those
in the current situation. We use a matching threshold ζ to
determine whether the current context “matches” the context
presented in the rule. We can set the mass threshold to a
value 0 ≤ ζ ≤ 1 and check if the mass of the current con-
text exceeds this ζ threshold. Contextual aspects with masses
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satisfying the threshold condition will be considered by the
memory management subcomponent. The memory manage-
ment subcomponent aggregates the applicable rules (i.e., rules
applicable to contexts in the current situation) and populates
WM. The WM stores rules of the form described earlier along
with corresponding uncertainty intervals.

The memory management subcomponent passes the con-
textual aspects along with their mass assignments to the
affordance inference subcomponent. The affordance infer-
ence subcomponent also has access to the WM of rules and
accompanying uncertainties. In order to perform inference,
the affordance inference subcomponent also needs uncertainty
information about the set of perceptual aspects, F, identified
in the applicable rules stored in WM. For this, it will turn to
PAC.

4) Attention Control and Perceptual Semantics: PAC
accesses the rules in WM and determines what perceptual
aspects need to be evaluated. For example, if PAC needs to
compute if there are grasp locations near the handle of a knife,
it can resolve this perceptual relation query

near(knife,G, holdPart(knife) = handle)?

PAC includes vision algorithms to resolve various sorts of
relations including the spatial relation of near(). PAC directs
low-level perception subcomponents (e.g., vision) to look for
and identify uncertainties associated with relevant percep-
tual aspects. PAC returns to ARC the masses associated with
perceptual aspects of the applicable rules.

5) Affordance Inference: The affordance inference subcom-
ponent of ARC then performs DS-theoretic inference on the
rules in WM using masses for the contextual aspects obtained
from the memory management subcomponent and masses for
the perceptual aspects obtained from PAC. ARC computes the
uncertainties associated with affordances prescribed by the
rules. In certain cases, the memory management subcompo-
nent will selectively populate WM with rules that not only
satisfy context, but also specify relevant affordance relations.
This set of rules would be a subset of the applicable rules for
the selected context.

Generally, affordance aspects and their associated uncer-
tainty intervals and confidence measures are passed from
ARC to other parts of the cognitive architecture including
those subsystems responsible for planning, reasoning and
sense-making.

IV. ROBOT KITCHEN HELPER EXPERIMENT: USING AND

HANDING OVER OBJECTS

For the experimental evaluation of the proposed computa-
tional cognitive affordance framework we will consider using
and handing over objects in a kitchen as a running example to
discuss the representation format, the uncertainty processing
framework, and the inference algorithm in the implemented
CALyX architecture. We will show how our framework assists
the agent in reasoning about and deciding what action possibil-
ities are available during each phase of the handover process,
from grasping the object, to handing it over.

Note that handing over objects “properly” is an important
skill for helper robotic agents. When performing a handover,

the robot will need to reason about potential actions it can per-
form on objects (affordances), for example, selecting grasps or
manipulating the object in certain ways. Existing approaches
have focused on selecting one or two handover norms (e.g.,
orienting a handle toward the receiver), a priori, and then
building object recognition and motion planning systems that
are dependent on the preselected norms [25], [26]. These
approaches fail to provide flexibility with which to reason
about action choices in an open world, where norms and rules
may change, norms may be added and removed, normative
conflicts may arise, and other contextual factors may influ-
ence the propriety of a handover. In contrast, we intend to infer
affordances based on: 1) the semantic representation of certain
visual percepts; 2) the agent’s current context; and 3) the gen-
eral domain and commonsense knowledge of the agent.

We will first provide a brief review of DS theory and then
use our framework to model the domain of cooking and assist-
ing humans in the kitchen. Then we will walk through how an
agent, staffed as a kitchen helper, reasons through the process
of handing over knives.

A. Dempster-Shafer Theory Preliminaries

A set of elementary events of interest is called frame of
discernment (FoD). The FoD is a finite set of mutually exclu-
sive events � = θ1, . . . , θN . The power set of � is denoted
by 2� = {A : A ⊆ �} [1].

Each set A ⊆ � has a certain weight, or mass associ-
ated with it. A basic belief assignment (BBA) is a mapping
m�(·) : 2� → [0, 1] such that

∑
A⊆� m�(A) = 1 and

m�(∅) = 0. The BBA measures the support assigned to the
propositions A ⊆ � only. The subsets of A with nonzero mass
are referred to as focal elements and comprise the set F�.
The triple E = {�,F�,m�(·)} is called the body of evi-
dence (BoE). For ease of reading, we sometimes omit F�
when referencing the BoE.

Given a BoE {�,F�,m�(·)}, the belief for a set of
hypotheses A is Bel(A) = ∑

B⊆A m�(B). This belief function
captures the total support that can be committed to A without
also committing it to the complement Ac of A. The plausi-
bility of A is Pl(A) = 1 − Bel(Ac). Thus, Pl(A) corresponds
to the total belief that does not contradict A. The uncertainty
interval of A is [Bel(A),Pl(A)], which contains the true prob-
ability P(A). In the limit case with no uncertainty, we get
Pl(A) = Bel(A) = P(A).

DS theory can be considered a generalization of Bayesian
theory. For example, a Bayesian would model Schrödinger’s
cat as a probability distribution over {dead, alive}, assigning
a probability to each hypothesis. DS would assign masses to
each of {dead, alive, {dead or alive}}, without beliefs having
to sum up, for example Bel(dead)+ Bel(alive) �= Bel(dead ∨
alive). One notable advantage of this uncertainty processing
framework is that it allows for the allocation of probabil-
ity masses to sets of hypotheses, and does not require an
assumption about the probability distribution among members
of that set.

Logical inference with uncertainty can be performed
using DS-theoretic logical inference with uncertainty can be
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performed using DS-theoretic “modus ponens” (denoted ) as
discussed by Tang et al. [33]. We will use Tang’s DS-theoretic
AND [33] (denoted ⊗) to combine BoEs on different FoDs.
We choose to use Tang’s models [33] of modus ponens and
AND over other proposed models because those models do
not allow uncertainty to be multiplicatively combined.

We will use Yager’s rule [34] of combination (denoted ∩)
to combine BoEs on the same FoD. Yager’s rule of combina-
tion aggregates evidences or confidence values from different
sources, but within the same FoD. Formally, when combining
evidence from n different sources within the same frame, �,
the combined multievidence BBA, according to Yager’s rule
is defined as follows:

m�(∅) = 0

m�(A) =
∑

∩Bi=A

n∏

i=1

m�i(Bi),∀A ⊆ �,A �= �,A �= ∅

m�(�) =
n∏

i=1

m�i(Bi)+
∑

∩Bi=∅

n∏

i=1

m�i(Bi).

Yager’s rule of combination is chosen because it allows
uncertainty to be pooled in the universal set, and due to
the counter-intuitive results produced by Dempster’s rule of
combination, as discussed in [35].

For two logical formulas φ1 [with Bel(φ1) = α1 and
Pl(φ1) = β1] and φ2 [with Bel(φ2) = α2 and Pl(φ2) = β2],
applying logical AND yields φ1 ⊗ φ2 = φ3 with Bel(φ3) =
α1 · α2 and Pl(φ3) = β1 · β2.

For logical formulas φ1 [with Bel(φ1) = α1 and Pl(φ1) =
β1] and φφ1→φ2 [with Bel(φφ1→φ2) = αR and Pl(φφ1→φ2) =
βR, the corresponding model of modus ponens is φ1 
φφ1→φ2 = φ2 with Bel(φ2) = α1 · αR and Pl(φ2) = 1 −
((1 − Pl(β1)) · (1 − Pl(βR))].

Moreover, we will use the “confidence measure” λ (defined
in [36]) to be able to compare uncertainties associated with
formulas φ and their respective uncertainty intervals [α, β]

λ(α, β) = 1 + β

γ
log2

β

γ
+ 1 − α

γ
log2

1 − α

γ

where γ = 1 + β − α.

Here, φ is deemed more ambiguous as λ(α, β) → 0.

B. Semantic Representation of Visual Perception, F

The vision pipeline for an artificial agent involves various
low-level components that are coupled together to process
color and depth information and generate point clouds and
3-D meshes. As noted earlier, PAC is configured to perform
scene representation and semantic analysis to generate pred-
icates that capture, qualitatively, certain aspects of the visual
scene.

Let F = {�F1,�F2 , . . . , �FN } be the set of N different
perceptual aspects such as color, shape, texture, relational
information, and generally information obtained from the
vision pipeline that an agent may interpret. Each aspect
�Fi = {fi,1, fi,2, . . . , fi,M} has a set of M mutually exclusive
candidate perceptual values (percepts), which come from the
vision system as a BoE, EFi = {�Fi,m�Fi

(·)}. We will use

mfi,j to denote the candidate mass values of the percepts, where
i ∈ {1 . . .N} and j ∈ {1 . . .M}.

For the purposes of our example, we will represent the
agent’s visual perception of kitchen objects with nine binary
visual aspects, each aspect with a percept and its negation.
Thus, �Fi = {fi,j,¬fi,j}, where i ∈ {1 . . . 9} and j ∈ {1}.
The percepts and masses for each of the nine aspects, can be
obtained from the low-level vision system, are shown below.

holdPart(O) and funcPart(O) are functions that return the
name of the holding and functional parts of an object O.
Thus, funcPart(knife) = blade represents the knowledge
that the blade is the functional part of the knife. Similarly,
holdPart(knife) = handle represents the knowledge that the
handle is the holding part of the knife.

hasSharpEdge(O), hasPointyTip(O) and hasOpening(O)
represent the perception of various physical features on
object O. In the case of knife we use algorithms developed
by [37] to extract shape feature information from the object
using object meshes. We then segment the objects (handle and
blade) based on their relative sharpness.

near(O,G, part) represents the location of a set of
graspable points G on an object O in relation to a
certain object part (holding or functional part). Thus,
near(knife,G, holdPart(knife) = handle) states that there
are grasp points near the handle. The grasp points may be
extracted from visual point clouds using algorithms devel-
oped by [38] that identify antipodal grasp information based
on object geometries. We can then group these grasp points
based on their location and proximity to the shape features
noted above.

dirty(O) represents a measure for whether a certain object
is dirty or contains food particles. Thus, dirty(knife) describes
the knowledge that the knife is dirty. The value of this predi-
cate is obtained from low-level vision components tasked with
monitoring image characteristics of color and homogeneity.

grasped(O, part) represents the agent’s knowledge that
it has grasped a certain part of the object. For exam-
ple, grasped(knife, holdPart(knife) = handle) represents the
knowledge that the agent has grasped the handle.

inUse(O,H) represents the agent’s observation that an
object O is currently in use by a person or agent H.

We selected these particular visual aspects because of their
significance to the rules that we will discuss in more detail
in the below sections. There is a potentially huge number
of semantic aspects and relations in the environment and it
would not be possible for the agent to keep track of them all.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on April 08,2024 at 01:18:48 UTC from IEEE Xplore.  Restrictions apply. 



32 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 1, MARCH 2018

Our approach simplifies the task for PAC and the vision sys-
tem to only look for certain relevant perceptual features based
on the agent’s current context. We envision that our set of
perceptual aspects, F, may change dynamically to include and
exclude percepts as contexts and situations change over time.

C. Relevant Contextual Items, C

Knowledge of the agent’s current context is provided to
CALyX by certain high-level processing components such
as the agent’s belief, planning, and goal management sys-
tems. The context is representative of the agent’s beliefs,
goals, desires, and intentions, along with certain other abstract
constructs in the agent’s situation. Together, these contex-
tual items, processed as predicates, represent qualitatively the
agent’s abstract context, i.e., knowledge not directly perceiv-
able.

Let C = {�C1,�C2 , . . . , �CN } be the set of all contex-
tual aspects an agent may need to interpret. Each contextual
aspect �Ci = {ci,1, ci,2, . . . , ci,M} has M mutually-exclusive
candidate contextual states, which come from the high-level
components as a BoE, ECi = {�Ci ,m�Ci

(·)}. We will use mci,j

to denote the candidate mass values of the contexts, where
i ∈ {1 . . .N} and j ∈ {1 . . .M}.

For the purposes of our example, similar to our represen-
tation of perceptual aspects, we will represent the agent’s
contextual knowledge with two binary contextual aspects. The
first contextual aspect represents the agent’s current domain
or setting, L, and it includes a contextual value (context) of
being a kitchen helper and its negation: �C1 = {c1,1,¬c1,1}.
The second contextual aspect represents the agent’s tasks in
the kitchen while playing two different social roles: 1) as a
primary actor using objects and 2) as a supporting assistant
giving objects to others. This aspect includes two contextual
values: �C2 = {c2,1, c2,2}. The contexts and masses for each
of the two aspects, can be obtained from the agent’s belief and
planning systems.

domain(X,L) represents the agent’s, X, current domain, L.
For example, domain(self , kitchen) represents the knowledge
that the agent is currently in the domain of working in the
kitchen. The reason for the domain context is to help the
agent constrain the set of possible affordances available on
the object to the domain it is currently in. For example, the
agent might not need to consider affordances of a knife as a
camping tool or as a self-defense tool, while it is function-
ing as a kitchen helper. Thus, by choosing a domain, we can
restrict what types of affordances the agent needs to reason
about in its current task. This is not to say that the agent
cannot think creatively or absorb affordance rules from other
domains. But, as a simplification for this example, we choose
contextual aspects that can help the agent effectively manage
the computational complexity of affordance inference.

task(X, use,O) represents the agent’s, X, understanding
of its current task-related context as being that of “using”
object O. For example, task(self , use, knife) means that the
current task-context is that of the agent using the knife for its
intended purpose of cutting.

task(X, give,O) represents the agent’s, X, understanding of
it is current task-related context as being that of “giving” or
“handing over” object O. For example, task(self , give, knife)
means that the current context is that of the agent handing
over the knife to another.

We will discuss the rules themselves in more detail in the
next sections.

D. Cognitive Affordances, A

The next part of the representational framework are the cog-
nitive affordances A computed by CALyX based on applicable
rules in WM. We use affordances here to represent action pos-
sibilities available to the agent at any given moment in time.
The affordances are represented semantically with predicates
for action possibilities.

Let A = {�A1,�A2 , . . . , �AN } be the set of N dif-
ferent cognitive affordance aspects. Each aspect �Ai =
{ai,1, ai,2, . . . , ai,M} has a set of M mutually-exclusive can-
didate affordance values (affordances), which come as a BoE,
EAi = {�Ai,m�Ai

(·)}. We will use mai,j to denote the can-
didate mass values of the contexts, where i ∈ {1 . . .N} and
j ∈ {1 . . .M}.

For the purposes of our example, we will represent the
agent’s affordances with eight binary affordance aspects, each
aspect with an affordance and its negation. Thus, �Ai =
{ai,j,¬ai,j}, where i ∈ {1 . . . 8} and j ∈ {1}. The percepts and
masses for each of the eight aspects, can be obtained from our
rules.

We will discuss each of these affordance aspects below.
1) Commonsense Physical Affordances: Various objects in

the kitchen like knives, forks, spoons pots, pans, and appli-
ances offer the agent with various physical affordances. Here
we will consider three such affordances offered by a number of
different objects: 1) cutWith(X,O); 2) pierceWith(X,O); and
3) containWith(X,O), each representing an affordance of an
object O available to an agent X in a kitchen scenario. Objects
can have one or more of these affordances. For example,
knife can have the affordance of cutting as well as piercing,
depending on the shape of the knife.

2) Grasp Affordances: Many objects in the kitchen tend
to have a use for which they are designed, and accordingly
allow for holding and using the object in a particular way
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for this intended purpose. For example, knives are designed
for cutting and thus can be grasped by the handle and used
to cut with the blade. We account for grasp affordances with
a graspable(X,O, part) predicate, which represents that the
object O is graspable by agent X at a certain part of the object.
Thus, graspable(self , knife, holdPart(knife) = handle) repre-
sents that the knife’s handle has a grasp affordance in the
current context.

3) Social Affordances: In the context of a kitchen, there
are a number of social norms and rules that apply to ensure
safety, etiquette, cleanliness and a generally friendly atmo-
sphere. These rules present social affordances, i.e., action
possibilities related to social interaction that can be made avail-
able to the agent. Here, we consider sanitizeable(X,O), which
represents the possibility of washing and cleaning an object.
As we will see with respect to the rules in the next section,
social affordances can be represented both explicitly, as in
sanitizeable(X,O), and implicitly via socially-derived rules for
conduct, e.g., presenting the handle first when giving objects
to others.

4) Object Manipulation Affordances: Once the agent has
begun interacting with the object, certain new affordances
are made available to the agent: useable(X,O) represents
the agent’s X ability to use object O for its intended
purpose; giveable(X,O,H) represents the agent’s X ability
to give object O to a human or another agent, H; and
setOnTable(X,O,U) represents the agent’s X ability to place
object O on surface U. These affordances allow the agent to
consider its action possibilities once it is in the possession of
the object.

Now, we recognize that these affordance are always avail-
able to the agent: the agent can cut, grasp, give, wash and place
the knife at any time. Our affordance representation does not
deny that latent affordances may exist in objects, but merely
attaches uncertainties to their potential applicability. Certain
dormant affordances will have low uncertainties unless cer-
tain contextual situations arise, and our rules seek to capture
this type of reasoning with affordances.

It could also be argued that there are many more affordances
for knives, and that we are limited in considering only a few.
We agree with this argument and only present this exemplary
set for demonstration and evaluation purposes. In reality, there
are many more affordances, possibly unlimited, and our cog-
nitive affordance inference framework can reason about all of
them simultaneously. Although we will not address the issue
of whether or not there are infinitely many affordances, we
will contend that only a finite subset of them is relevant in
any given set of contexts, applicable at a particular moment
in time.

E. Cognitive Affordance Rules, R

The fourth part of our representational framework is the set
of rules, R, that represent the cognitive affordance aspects, A,
of the perceptual aspects, F, in a contextual aspects, C. We will
present an exemplary set R of rules for the handover example
below.

Let R = {�R1,�R2 , . . . , �RN } be the set of N different
cognitive affordance rule aspects. Each rule aspect �Ri =
{ri,1, ri,2, . . . , ri,M} has a set of M mutually-exclusive can-
didate rule values (rules), which come as a BoE, ERi =
{�Ri,m�Ri

(·)}. We will use mri,j to denote the candidate mass
values of the contexts, where i ∈ {1 . . .N} and j ∈ {1 . . .M}.

For the purposes of our example, we will represent the
agent’s affordances with 18 rule aspects (representing 18
rules), each aspect with a rule and its negation. Thus, �Ri =
{ri,j,¬ri,j}, where i ∈ {1 . . . 18} and j ∈ {1}. The percepts and
masses for each of the 18 aspects, can be obtained from our
rules.

Generally, the rules are of the form

ri,j
mfc→a

:= f ∧ c =⇒ a.

The belief function, Bel(R), captures the total support that
can be committed to a rule, R, without also committing to
the negation of the rule. The plausibility of R is, Pl(R), corre-
sponds to the total belief that does not contradict R. Together,
the belief and plausibility represent the uncertainty interval,
[α = Bel(R), β = Pl(R)]. Thus, we write the rules in the form

ri,j
[αi,j,βi,j] := f ∧ c =⇒ a.

Below, we show each of the 18 rules for this example,
presenting the uncertainty intervals for each of the rules. We
have chosen uncertainty intervals in such a way that the more
specific the rule, the more certainty and higher degree of belief
the agent has about that particular rule. Thus, more specific
the rule, narrower the uncertainty interval and higher the val-
ues for α and β. Also, for ease of reading, we have omitted
the index j = 1

Commonsense Physical Rules:
r1

[0.8,1] := hasSharpEdge(O)∧
domain(X, kitchen) =⇒
cutWith(X,O)
r2

[0.8,1] := hasPointyTip(O)∧
domain(X, kitchen) =⇒
pierceWith(X,O)
r3

[0.8,1] := hasOpening(O)∧
domain(X, kitchen) =⇒
containWith(X,O)
General Social Rules:
r4

[0.95,0.95] := dirty(O)∧
domain(X, kitchen) =⇒
sanitizeable(X,O)
r5

[0.95,0.95] := ¬inUse(O,H)∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O))
r6

[0.95,0.95] := ¬inUse(O,H)∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O))
General Object Grasp Rules:
r7

[0.55,0.95] := near(O,G, holdPart(O))∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O))
r8

[0.55,0.95] := ¬near(O,G, holdPart(O))∧
near(O,G, funcPart(O))∧
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domain(X, kitchen) =⇒
graspable(X,O, funcPart(O))
Task-based Social Rules:
r9

[0.8,0.9] := near(O,G, holdPart(O))∧
task(X, use,O)∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O))
r10

[0.8,0.9] := near(O,G, funcPart(O))∧
task(X, give,O)∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O))
r11

[0.95,0.95] := near(O,G, holdPart(O))∧
¬dirty(O)
task(X, use,O)∧
domain(X, kitchen) =⇒
graspable(X,O, holdPart(O))
r12

[0.95,0.95] := near(O,G, funcPart(O))∧
¬dirty(O)
task(X, give,O)∧
domain(X, kitchen) =⇒
graspable(X,O, funcPart(O))
Object Interaction Rules:
r13

[0.8,0.9] := grasped(O, holdPart(O))∧
task(X, use,O)∧
domain(X, kitchen) =⇒
useable(X,O)
r14

[0.8,0.9] := grasped(O, funcPart(O))∧
task(X, give,O)∧
domain(X, kitchen) =⇒
giveable(X,O,H)
r15

[0.55,0.95] := grasped(O, holdPart(O))∧
domain(X, kitchen) =⇒
setOnTable(X,O,T)
r15

[0.55,0.95] := grasped(O, funcPart(O))∧
domain(X, kitchen) =⇒
setOnTable(X,O,U)
r17

[0.8,0.9] := grasped(O, holdPart(O))∧
dirty(O)∧
domain(X, kitchen) =⇒
setOnTable(X,O,U)
r18

[0.8,0.9] := grasped(O, funcPart(O))∧
dirty(O)∧
domain(X, kitchen) =⇒
setOnTable(X,O,U).

Rules r1−r3 relate to the agent’s general commonsense
understanding of the physical properties of objects. For exam-
ple, sharp edges provide a cutting affordance.

Rules r4−r6 prescribe several social rules in a kitchen envi-
ronment. For example, dirty objects need to be sanitized and
only objects not currently used by someone else are available
for grasping.

Rules r7 and r8 provide general rules on grasping objects.
For example, if there are grasp points near the handle of a
knife, then the handle has a grasp affordance, and if there are
no grasp points near the handle, but there are some near the
blade, then the blade has a grasp affordance.

Rules r9−r12 relate to social etiquette and convention when
using and giving objects. These rules provide a narrowing

context depending on the agent’s current task of using the
object itself or giving the object to another. For example, when
handing over an object, it is “proper” to hold the functional
part of the object (e.g., knife) and present the handle toward
the recipient.

Rules r13 − r18 are kitchen rules that apply when the agent
is manipulating and interacting with the object. For example,
if the agent is holding the knife by its blade and is tasked
with giving it to a human, then it is afforded the possibility
of giving the knife.

F. Handover Inference

We will now turn to how a robot with our computational
framework can use these rules to reason through the process
of handing over a knife. Consider a robot helper receiving
instructions from a human, Julia. Suppose Julia says to the
robot: “Bring me something clean I can use to cut this tomato.”
The robot will need to parse this request and infer affor-
dances of objects in its environment in context. Before we
can describe how the robot can perform this inference for the
knife-handover example, we will first describe our inference
process and algorithm more generally.

G. Inferring Affordances With Uncertain Logic

The goal of defining cognitive affordance models is to infer
object affordances based on: 1) their perceivable features;
2) the known context; and 3) general domain and common
sense knowledge. We propose to start with the first prototype
inference algorithm shown in Algorithm 1 and refine it to tailor
it specifically to a cognitive affordance model. The algorithm
takes three parameters:

1) a BoE of candidate perceptions {�F,mf } is provided by
the low-level vision system;

2) a BoE of relevant contextual items {�C,mc} provided
by a knowledge base or some other part of the integrated
system that can provide context information;

3) a table of cognitive affordance rules R. Each rule rf ∧c→a

in R is indexed by a feature perception f and a set of
contextual items c, and dictates the mass assigned to
Bel(a) and Pl(a) when the system believes the degree to
which object features f were detected and that contextual
items c are true. Here, a is a complex logical expression
representing the affordance that can be derived from the
perceived features f in context c.

The inference algorithm then examines each rule rfc→a ∈ R
(line 5), and mfc is determined by performing mf ⊗mc (line 6),
where mf specifies the degree to which object feature f is
believed to be detected, and mc specifies the degree to which
each of the rule’s associated contextual items is believed to be
true. Uncertain modus ponens is then used to obtain ma from
mfc→a and mfc (line 6).

Note that since we allow multiple affordance rules to be
considered, multiple affordances may be produced. Multiple
rules may produce the same affordances for various reasons,
possibly at different levels of belief or disbelief. However, we
seek to return the set of unique affordances implied by a set
of perceptions f .
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Algorithm 1 getAffordance({�F,mf },{�C,mc},R)
1: {�F,mf }: BoE of candidate perceptual features
2: {�C,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: S = S ∪ {(mf ⊗ mc) mr=fc→a}
7: end for
8: G = group(S)
9: ψ = ∅

10: for all group ga ∈ G do

11: ψ = ψ ∪ {
|ga|⋂

j=0
gaj}

12: end for
13: return ψ

After considering all applicable affordance rules, we group
affordances that have the same content but different mass
assignments (line 8), and use Yager’s rule of combination
(line 11) to fuse each group of identical affordances, adding
the resulting fused affordance to set ψ . This set then represents
the set of affordance implied by the perceived features f .

Finally, we can use the confidence measure λ to deter-
mine whether an inferred affordance should be realized and
acted upon. For example, we could check the confidence of
each affordance a ∈ ψ on its uncertainty interval [αi, βi]:
if λ(αi, βi) ≤ �(c) [where �(c) is a confidence threshold,
possibly depending on context c], we do not have enough
information to confidently accept the set of inferred affor-
dances and can thus not confidently use the affordances to
guide action. However, even in this case, it might be possi-
ble to pass on the most likely candidates to other cognitive
systems. Conversely, if λ(αi, βi) > �(c), then we take the
inferred affordance to be certain enough to use it for further
processing.

H. DS-Theoretic Handover Inference

Returning to our knife-handover example, the robot, X =
self , parses the request from Julia (i.e., for an object she can
use to cut a tomato) and assigns its own task context and
determines the types of affordances it is interested in exploiting
in the kitchen environment. The agent is confident that it is
in the kitchen context and that it is in the context of handing
over an object in the kitchen, and assigns context masses as
follows:

domain(self , kitchen) : mc1,1 = 1.0

task(self , give,O) : mc2,1 = 0.95

task(self , use,O) : mc2,1 = 0.05.

Specifically, the robot’s cognitive architecture includes
a natural language processing component, which processes
Julia’s instruction. The phrase “bring me something” is taken
by the robot to indicate a “give” context as opposed to a
“use” context. This contextual information is obtained out-
side of CALyX and passed into it as input. Similarly, the
robot’s cognitive architecture includes belief and goal man-
agement components, which process the robot’s current role

Fig. 3. Selecting applicable rules based on context.

Fig. 4. Determining beliefs of perceptual aspects.

as a kitchen helper and compute the likelihood that is in the
“kitchen” domain. This, too, is passed as input to our CALyX
system.

CALyX’s memory management subcomponent receives
this contextual information and selects applicable rules
(Fig. 3, step 1). LTM potentially contains a large set of rules
across various contexts that the robot has acquired over its life-
time. Given the specific domain and task contexts, the memory
management subcomponent selects a subset of applicable rules
from the LTM (step 2) and populates the WM with these rules
(step 3).

Although the context has been established and the applica-
ble rules have been identified, at this point the robot is not
yet ready to do any affordance inference because it does not
know whether the perceptual aspects specified by the rules
are satisfied. Given the set of applicable rules in WM (Fig. 4,
step 1), PAC can guide or direct sensory processing systems
(step 2) to determine the uncertainties associated with each
of the perceptual aspects specified in the set of applicable
rules (step 3). For example, based on its set of rules, it knows
to look specifically for certain visual percepts relevant to the
rules, such as near(), sharpEdge(), and so on. Note, at this
point, the robot is not aware of a specific object that it needs
to find, but with PAC in combination with the low-level vision
system, it can scan its environment and examine each object
more closely to determine which perceptual aspects specified
above are satisfied.

1) Spot the Knife—Directed Perception With PAC: Let
us assume that the agent spots a knife on the counter.
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Upon examining the physical features of the knife, the agent
determines masses for percepts in each of its perceptual
aspects.

For example, upon spotting the knife, PAC assigns the
percept hasSharpEdge(knife) with a mass mf3,1 = 0.95.
However, because it is slightly unsure it also assigns the pos-
sibility that the knife either has or does not have a sharp
edge, {hasSharpEdge(knife),¬hasSharpEdge(knife)}, with a
mass = 0.05. With these two masses, support for the per-
cept hasSharpEdge(knife) falls within the interval [α, β] =
[0.95, 1]. Similarly, we compute uncertainty intervals for all
the relevant percepts, when the agent sees the knife

hasSharpEdge(knife)[0.95, 1]

hasPointyTip(knife)[0.8, 0.9]

hasOpening(knife)[0, 0]

near(knife,G, holdPart(knife) = handle)[0.95, 0.95]

near(knife,G, funcPart(knife) = blade)[0.95, 0.95]

grasped(knife, holdPart(knife) = handle)[0, 0]

grasped(knife, funcPart(knife) = blade)[0, 0]

dirty(knife)[0.31, 0.81]

inUse(knife,H)[0, 0].

To summarize, the agent has detected a knife that has a
sharp edge and can be grasped, but it is not entirely sure if it
is clean or dirty. Note, the agent has yet to pick up and grasp
the object, so the grasped() predicates evaluate to [0, 0], which
means logically false with maximum certainty.

2) Affordance Inference With ARC: ARC examines each
rule ri

[αi,βi]
(line 5 of Algorithm 1) in WM (Fig. 5, step 1),

and mfc is determined by performing mf ⊗ mc (line 6), where
mf specifies the degree to which the percept f is believed to be
observed (Fig. 5, step 2), and mc specifies the degree to which
each of the rule’s associated contextual value is believed to be
true (Fig. 5, step 3). DS-based modus ponens is then used to
obtain ma from mfc→a and mfc (line 6) (Fig. 5, step 4).

For example, consider rule r1

r1
[0.8,1] := hasSharpEdge(O) ∧ domain(X, kitchen) =⇒

cutWith(X,O).

The agent will apply perceptual and contextual information
as follows, to determine the affordance implied by the rule:

r1
[0.8,1](mr = 0.8) :=

hasSharpEdge(knife)(mf = 0.95) ∧
domain(self , kitchen)(mc = 1.0) =⇒

cutWith(self , knife)(ma = (mf ⊗ mc) mr = 0.76).

The uncertainty interval for the rule can then be computed
as [0.76, 1]. The agent will subsequently perform this analysis
for each of the other rules in the set to determine uncertainty
intervals for the implied affordances.

To be able to generate a set of unique affordances, a,
implied by feature, f , after considering all applicable affor-
dance rules, we thus group affordances that have the same

Fig. 5. Performing inference of cognitive affordances.

semantic content but different mass assignments (line 8)
and use Yager’s rule of combination (line 11) to fuse each
group of identical intentions, adding the resulting fused inten-
tion to set ψ . Thus, affordances from rules r1, r3, r6, and
r17 will be fused as these rules all apply to the affor-
dance of graspable(self , knife, holdPart(knife) = handle).
The agent will also fuse together rules r2, r4, r7, and r18

as these rules all apply to the affordance of graspable(self ,
knife, funcPart(knife) = blade). The agent will further fuse
together rules r13, r14, r15, and r16 as these rules all apply to
the same affordance of setOnTable(self , knife, table).

Based on the application of each rule to the semantic visual
percepts and contextual items, and fusing rules with similar
implied affordances together we can generate a list of unique
affordances available to the agent at the current moment in
time, when it has seen the knife.

Available affordances (Upon Seeing the Knife), ψ
cutWith(knife)[0.76, 1], λ = 0.29
pierceWith(knife)[0.64, 1], λ = 0.16
containWith(knife)[0, 1], λ = 0
sanitizeable(knife)[0, 0.95], λ = 0.004
graspable(self , knife,

holdPart(knife) = handle)[0.96, 0.99], λ = 0.78
graspable(self , knife,

funcPart(knife) = blade)[0.98, 0.99], λ = 0.88

This information is passed from CALyX to other parts of
the cognitive architecture like the robot’s goal and action man-
agement system, which performs different operations based on
these measured uncertainty intervals and associated λ confi-
dence measures. The agent might decide that because there is
a high degree of confidence that the object under considera-
tion has a cutWith affordance, it will choose to grasp it and
then select to grasp it at the blade, given the context of a han-
dover. As it is unclear that the knife is dirty, the agent is less
confident that the knife needs cleaning.

3) Grasp the Knife—Iterated Directed Perception With
PAC: Affordance inference in this manner with CALyX is
an iterative or cyclical process and affordances are computed
and recomputed continuously to guide the robot’s next actions.
Thus, once the robot has grasped the knife, CALyX is once
again tasked with inferring affordances to determine what the
robot can and cannot do with the knife that it is holding.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on April 08,2024 at 01:18:48 UTC from IEEE Xplore.  Restrictions apply. 



SARATHY AND SCHEUTZ: LOGIC-BASED COMPUTATIONAL FRAMEWORK FOR INFERRING COGNITIVE AFFORDANCES 37

Here the contexts remain the same, so the rules in WM
are likely unchanged. However, because the world state has
changed (i.e., the knife is no longer on the table but in the
hands of the robot), the perceptual aspects specified by the
rules potentially have different truth values. PAC is once again
called upon to update the uncertainty intervals associated with
the visual perceptual aspects as follows:

hasSharpEdge(knife)[1, 1]

hasPointyTip(knife)[0.95, 0.95]

hasOpening(knife)[0, 0]

near(knife,G, holdPart(knife) = handle)[0.95, 0.95]

near(knife,G, funcPart(knife) = blade)[0.05, 0.05]

grasped(knife, holdPart(knife) = handle)[0, 0]

grasped(knife, funcPart(knife) = blade)[1, 1]

dirty(knife)[0.95, 1]

inUse(knife, self )[1, 1].

It updates the grasped() predicate information because it
has now grasped the knife’s blade. The robot also detects that
the knife is dirtier than initially determined, and there are no
longer any grasp points available near the blade, because it is
already holding the blade. It also is more certain that the knife
has a sharp edge and pointed tip. Finally, it also knows that
because it is using the knife, the knife is “inUse.”

4) Iterated Affordance Inference With ARC: Based on
this update, ARC will recalculate the uncertainty intervals
and confidence measures associated with its affordances, as
follows:

Available Affordances (After Grasping Knife), ψ
cutWith(knife)[0.8, 1], λ = 0.34
pierceWith(knife)[0.76, 1], λ = 0.29
containWith(knife)[0, 1], λ = 0
sanitizeable(knife)[0.9, 1], λ = 0.564
graspable(self , knife,

holdPart(knife) = handle)[0.5, 0.9], λ = 0.07
graspable(self , knife,

funcPart(knife) = blade)[0.03, 0.9], λ = 0.0006
setOnTable(self , knife, table)[0.84, 0.99], λ = 0.43
useable(self , knife)[0, 0.95], λ = 0.004
giveable(self , knife, Julia)[0.9, 1], λ = 0.56

Having detected that the knife is dirtier than initially deter-
mined, the agent now has a higher confidence that the knife
has a sanitizeable affordance. The agent also has additional
affordances available. It has high confidence that the knife is
giveable to Julia and that the knife can be set on the table. It
knows that the knife is not currently useable to cut things by
itself, mainly because it is holding the blade and the current
context is a handover, and not use.

Once again, this information is passed to other parts of the
agent’s cognitive architecture like goal and action management
systems, which perform different operations based on these
measured uncertainties. The agent might decide to choose to
realize one or more of the above observed affordances.

V. EXPERIMENT—MULTIDOMAIN,
MULTISCENARIO HANDOVER

A. Introduction

In our first example of a kitchen helper handing over a
knife, we demonstrated the capability of our framework to
reason about cognitive affordances of handing over objects.
We limited the experiment to one domain (i.e., the kitchen
helper) and we focused on a simple set of rules that govern
social interactions in this domain. We demonstrated a flexi-
ble reasoning process that took into account social context.
In this second experiment, we extended the object handover
task and compared interactions across various domains and
expanded our notion of object affordances to “social affor-
dances” offered by humans in the scenario, as well. Object
handovers are often complex interactions that involve more
social intelligence than just reasoning about physical or social
aspects of the objects alone. Often, in human-human interac-
tion scenarios, the giver must tune into various social cues
(e.g., eye-gaze) offered by the receiver indicating whether a
handover must be initiated or not. Social context is highly
relevant to object handovers, and we will demonstrate the flex-
ibility of our framework in reasoning about situations when
similar observations of the environment have very different
meanings in different contexts.

For this experiment we built on some of the extensive
previous work in determining parameters of a handover from
a physical and temporal sense and in deciding its timing
and trajectories [39], [40]. With regards to social cognition
during handovers, Strabala et al. [16] have extensively studied
social cues that are crucial to coordinating a handover.
They provide four exemplary domains: 1) elder care-giver;
2) mechanic-helper; 3) fire-brigade volunteer; and 4) flyer-
handout giver—that all feature a handover activity, but under
very different contexts. In this experiment, we implemented
an affordance-based handover reasoning mechanism for these
four socially distinct domains. While Strabala et al. [16]
focused on discovering a unified handover structure that might
apply in all these four domains, we retained the richness
and distinctions of these four different domains, and instead
reasoned about the affordance of “transferability” of an object
prior to the handover. We will begin by describing the four
domains in more detail.

B. Domains

We will consider four exemplary domains as originally
introduced by Strabala et al. [16] and expanded by us, as
follows.

1) Care-Giver: At an elder care facility. In this domain, a
care-giver or assistant holding a glass of water is tasked
with handing it over to the patient. The care-giver must
be sure that the patient is ready to receive the water
before beginning the transfer process. In many cases, it
is further desirable that the patient make eye contact and
orient her body toward the care-giver. Moreover, in this
scenario, it is often not appropriate for the care-giver
to handover the water when the patient is not attentive
and looking away, even if the patient is reaching out or
verbally requesting the water.
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2) Mechanic’s Helper: In this domain, a helper is tasked
with handing over a wrench to a mechanic. The social
cues in this domain, while similar in structure to the cues
in the care-giver scenario, are vastly different in how
they influence the interaction. Here, the mechanic may
be under a car or focused on the task at hand, and, there-
fore, not attentive to the assistant. So the helper must be
more attentive to other signals such as the mechanic
reaching out with an outstretched arm and verbally
requesting the wrench. Eye contact and body orientation
may be less important in this scenario. Indeed, some-
times the mechanic may be facing the helper but not
be ready for the wrench, hence the handover must be
confirmed through verbal signals or by reaching out.

3) Fire-Brigade: In this domain, a helper or volunteer, who
is one of many agents (humans and robots) in a line,
is tasked with passing buckets of water from a source
to the scene of a fire. This domain is different from
the prior two domains in its ignorance of social con-
text. Generally, there is a known procedure for swinging
buckets and the urgent nature of the situation has elim-
inated the role of social etiquette. In this domain, it is
often permissible to begin a handover procedure without
many social cues like eye gaze, reaching, or verbaliz-
ing. Bodies are often not facing each other and the only
real condition to begin the transfer is possession of the
bucket of water. As long as the giver is holding a bucket
of water, the transfer should begin.

4) Flyer-Handouts: In this domain, a giver is tasked with
handing out flyers on a busy university sidewalk. As
Strabala et al. [16] note, the giver has no prior relation-
ship with the people on the sidewalk, and so established
social norms apply. In fact, this domain is the comple-
ment of the fire-brigade domain because many social
cues, including eye gaze, body orientation, reaching out
actions and verbal confirmation, all apply. The passerby
who is interested in receiving a flyer is likely to face
the giver, make eye contact and request a handout while
reaching out. The giver would be considered rude if she
imposed a flyer on someone who was merely walking
toward her or if the passerby provided verbal cues and
hand motions that might appear to be a reaching action,
when in fact they were signaling the opposite.

C. Representing Social Cues and Domain Rules

To represent these domains, we first selected well-
established social cues offered by the receiver to the giver
that are often considered relevant to handovers: eye gaze
or eye contact, verbal confirmation, the action of reaching
out and requesting the object, and body orientation [16].
We represented these social cues as predicates (with intuitive
semantics) eyeGaze(X), verbalSignal(X), reachingOut(X), and
bodyFacing(X), respectively, where X refers to the receiver.
In addition to the social cues, we also represented the infor-
mation that the robot is holding object O (i.e., the object to
be handed over) with the predicate holding(self ,O). We rep-
resented the affordance of transferability with the predicate

TABLE I
DOMAIN-SPECIFIC RULE UNCERTAINTY ASSIGNMENT

transferable(O,X) to mean that object O is transferable to
receiver X.

With these social cues, we assigned simple social rules or
norms that are applicable generally (but to varying degrees)
across all four domains, as follows:

r1 := eyeGaze(X) ∧ holding(self ,O) ∧
goal(handover) =⇒ transferable(O,X)

r2 := verbalSignal(X) ∧ holding(self ,O) ∧
goal(handover) =⇒ transferable(O,X)

r3 := reachingOut(X) ∧ holding(self ,O) ∧
goal(handover) =⇒ transferable(O,X)

r4 := bodyFacing(X) ∧ holding(self ,O) ∧
goal(handover) =⇒ transferable(O,X)

r5 := holding(self ,O) ∧ goal(handover) =⇒
transferable(O,X)

r6 := eyeGaze(X) ∧ bodyFacing(X) ∧
holding(self ,O) ∧ goal(handover) =⇒
transferable(O,X)

r7 := verbalSignal(X) ∧ reachingOut(X) ∧
holding(self ,O) ∧ goal(handover) =⇒
transferable(O,X)

r8 := eyeGaze(X) ∧ bodyFacing(X) ∧
verbalSignal(X) ∧ reachingOut(X) ∧
holding(self ,O) ∧ goal(handover) =⇒
transferable(O,X).

D. Representing the Domain Distinctions

We represented the different levels of importance of the
rules in the four domains by assigning them different uncer-
tainties depending on the domain. We selected uncertainties
for the rules from three settings, as follows:

High = [0.95, 1]

Medium = [0.5, 0.6]

Low = [0.31, 0.81].

Here, “high” refers to the setting in which the rule is
believed to be true with a low uncertainty (i.e., high degree
of certainty). Similarly, the “medium” and “low” levels each
correspond to a setting in which the rules are believed to be
true, but with medium and high uncertainty, respectively.
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TABLE II
PERCEPTUAL UNCERTAINTY ASSIGNMENT FOR FOUR SCENARIOS

We assigned an uncertainty level for each the rules in each
of the domains, as shown in Table I. For example, since all
social cues are important for the flyer-handout domain, rule 8
featuring all of these cues is the most important one. In con-
trast, in the fire-brigade domain, the only rule that is the most
important is the commonsensical rule 5, which requires pos-
session of the bucket before transfer, without any other social
overhead. In the elder care domain, it is important that the
patient face the giver and make eye contact, whereas in the
mechanic domain, it is important that the mechanic reach out
and ask for a wrench before initiating handover. Accordingly,
rules corresponding to these social cues were given more
importance and higher certainty.

E. Experimental Scenarios

For our experiment, we considered four scenarios that are
possible within any or all of these domains. These four scenar-
ios represent the truth settings for the set of perceptual social
cues: 1) eye gaze; 2) body orientation; 3) verbal request; or
4) reaching out—in a given situation. For example, a mechanic
under a car requesting a wrench may not make eye contact or
orient their body toward the giver, so the perceptual cues like
eye gaze and body orientation would be false in this scenario.
But the mechanic is reaching out his arm and requesting a
wrench verbally, so the perceptual cue for verbal request and
reaching out would be true. We acknowledge the fact that with
four social cues, there are 16 possible scenarios. In particu-
lar, each scenario would include a combination of true/false
settings for the four perceptual cues: 1) eye gaze; 2) body ori-
entation; 3) verbal request; or 4) reaching out. However, we
have limited our presentation in this paper to the four follow-
ing exemplary scenarios that were the most informative, across
all our domains.

Scenario 1 (S1): When the receiver is making eye contact
and facing the giver, but not providing any verbal cues or
reaching out to the giver (e.g., an elderly patient signaling
that they are ready to receive water).

Scenario 2 (S2): When the receiver is verbally requesting
the object from the giver and is extending her arm in antici-
pation of receiving the object. The receiver, however, is busy
performing another task and is turned away and not looking
at the giver.

Scenario 3 (S3): Here the receiver is fully engaged in the
handover and is providing all social cues.

Scenario 4 (S4): Here, the receiver is only signaling verbally
that he is ready to receive the object, but his attention maybe

elsewhere as he is looking and turned away from the giver.
He is also not extending his arm or reaching out to the giver.

We also generated four additional scenarios that were varia-
tions of the first four. These additional scenarios only differed
from the original four in that we diminished the truth and false
certainties using the “somewhat true” and “somewhat false”
uncertainty setting

True (T) = [0.95, 1]

False (F) = [0, 0.05]

Somewhat True (sT) = [0.62, 0.96]

Somewhat False (sF) = [0.040.38].

Here, the somewhat true is an uncertainty setting for per-
ceptual cues that are logically true, but with a greater amount
of uncertainty than that of the “true” setting (i.e., wider
uncertainty intervals). Similarly, the “somewhat false” is an
uncertainty setting for perceptual cues that are logically false,
but with a greater amount of uncertainty than that of the “false”
setting.

Overall, we represented the truth of the social cues in all
scenarios per uncertainty levels noted above and shown in
Table II. Note, these scenarios represent a truth setting for
each of the perceptual cues in a situation. The scenarios them-
selves are independent of the domain. Thus, for example, in
a domain, the giver could perceive a set of cues whose truth
settings could fit any one of the scenarios.

F. Experimental Results and Discussion

We performed affordance inferences for a total of 32 sit-
uations involving our eight scenarios (four certain and four
uncertain) across four domains. The results shown in Fig. 6
depict the confidence measure across the various scenarios.
Note, that higher λ values indicate a tighter uncertainty interval
and consequently a more confident or clear outcome. For each
scenario, we have depicted blue and yellow plots correspond-
ing to whether or not the uncertainty setting was true/false
or somewhat true/somewhat false, respectively. For example,
in scenario 1, the blue plots correspond to the case when
the eyeGaze() and bodyFacing() cues were assigned a set-
ting of true = [0.95, 1]. In this scenario, the yellow plots
correspond to the case when the eyeGaze() and bodyFacing()
cues were assigned an uncertainty setting of somewhat true =
[0.62, 0.96].

The results show that our computational framework con-
forms to our intuitions about these various scenarios.
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Fig. 6. Plots showing whether an object being held by the robot-giver
has an affordance of being “transferable” to the receiver. Each plot corre-
sponds to a particular perceptual scenario (truth values for the existence of
various social cues) across four domains—elder care-giver, mechanic-helper,
fire-brigade volunteer, and an agent handing out flyers. The perceptual cues in
a scenario have assigned truth values and an uncertainty interval. The yellow
plots correspond to the case when the cues have a higher level of uncertainty.
The experiment was performed for four different scenarios and the results
correspond to expected human-human interaction behavior in these scenarios
and domains.

Specifically, we show some interesting distinctions between
various domains. For example, in scenario 2 (S2), a transfer-
able affordance is considered to exist when a mechanic extends
his arm and requests a wrench even if he is not looking at or
facing the robot. While, that same type of behavior from a
patient in an elder-care facility may not offer the same kind
of transferability affordance. We further note that the transfer-
ability affordance is always present across various scenarios
in the fire-brigade domain, while it is only present for the
flyer-handout domain when the receiver is fully engaged with
the giver. As noted earlier the fire-brigade domain represents a
domain without much social context and so it is expected that
regardless of the social cues, buckets must be passed along. On
the other hand, the flyer-handout domain represents a domain
with deep social context and so it is expected that a transfer
should not be initiated unless all social cues are present.

We also show what happens when there is uncertainty intro-
duced to the various perceptions (see yellow plots in Fig. 6).
It may be uncertain as to whether the receiver is facing the
robot or has verbally requested the object. There may also
be uncertainties associated with the amount of eye contact or
whether an extended arm actually means that the receiver is

“reaching out.” Interestingly, even with uncertainty the overall
structure of the results remained the same but the confidence
of the conclusions dropped. That is, the robot is less sure of
whether an object has a transferability affordance when it was
less certain about whether or not it was perceiving the social
cues correctly. In these situations, we can have the robot clar-
ify the social cues and hold back and wait to handover the
object. Note, however, the fire-brigade domain exhibited the
least change even in the face of uncertainty. This is because
we emphasized the limited role played by social cues in these
emergent and largely procedural handover domains.

VI. DISCUSSION

A. CALyX

The novel CALyX architecture for inferring cognitive affor-
dances has an ARC and an attention control and PAC. In much
of the past work, affordances have been treated as a subsystem
of vision or planning. CALyX allows affordance processing
to be a separate component, not subsumed in a vision sys-
tem or a planning engine. The robot’s vision system is then
just one of several sensory systems that work with affordance
processing. For example, certain perceptual aspects like an
object’s weight may need the robot’s haptic and touch systems
to resolve. Thus, an affordance rule involving weight might
not involve the vision system at all, and consequently PAC
will need to direct the robot’s grippers and arms to determine
weight information.

In CALyX, affordance rules inform and guide visual atten-
tion, that is PAC is guided by the perceptual aspects present
in WM at any given moment in time. There have been find-
ings in psychology to support this approach and these findings
suggest that affordances influence visual attention by biasing
and focusing the visual search on those objects that afford rel-
evant actions. Particularly, researchers have shown support for
top-down control in attention processing, task-based priming
of visual search [41]–[43], and the influence of affordances
on visual attention [44]–[46]. Developmentally, this is very
advantageous as well because as the robot develops, our archi-
tecture allows the robot to take into consideration additional
perceptual aspects and social cues as it learns them. These
social cues will present themselves in the rules and allows the
robot to reason about these cues in relation to others as we
have shown here. Moreover, the framework allows the robot
to revise its rules and beliefs without the need to undergo new
rounds of training and learning, as is typically needed for other
statistically-inclined affordance learning frameworks.

We have also shown ARC and PAC as separate compo-
nents of CALyX. ARC and PAC perform different functions,
as noted above. However, this separation is not merely a func-
tional one. Each component is autonomous and does not rely
on the other beyond an input-output relationship. PAC can
potentially interface with not only the vision system but also
a haptic system and auditory system to perform perceptual
semantic analysis and attention on these other modalities when
the affordance rules demand it. Similarly, ARC interfaces with
various other higher-level cognitive systems (planning and
reasoning) to perform affordance-based reasoning tasks.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on April 08,2024 at 01:18:48 UTC from IEEE Xplore.  Restrictions apply. 



SARATHY AND SCHEUTZ: LOGIC-BASED COMPUTATIONAL FRAMEWORK FOR INFERRING COGNITIVE AFFORDANCES 41

CALyX is a flexible architecture and does not preclude
maintaining an episodic memory of situations that involve
acting on certain affordances and observing the effects. For
example, although not described explicitly, CALyX does not
exclude the robot from tracking and maintaining the effects
of grasping the knife and handing it over to the human.
We noted earlier, that the truth values of the perceptual
aspects can change from moment to moment and CALyX
does not preclude tracking this information. In fact, observ-
ing the effects can influence the uncertainty of some rules
in the current context. In the future, when the robot encoun-
ters similar contexts, it can remember these rules and reason
accordingly.

We recognize that because our framework is rule-based,
there is a possibility for rule conflicts. Rule conflicts can
arise in many ways. One way is if a feature and its nega-
tion produce the same affordance. If there is a rule (r1 :≡
handle ∧ context1 =⇒ graspable), then there might
be a conflict if there is then another rule that states that
(r2 : ≡ ¬handle ∧ context1 =⇒ graspable). Conflicts
of the type between r1 and r2 are currently being resolved
in our framework through our Yager fusion operator (which
was designed for handling conflicting evidence of this sort)
combining uncertainty evidence for graspable from each of
rules r1 and r2. Another way a conflict may arise is if the
same feature in the same context can produce conflicting
affordances. For example, if in addition to rule r1, there
is another rule implying a negation of an affordance, like
(r3: ≡ handle ∧ context1 =⇒ ¬graspable). Currently, in
the examples we have presented, we have not explicitly rea-
soned about “negative affordances” like ¬graspable. However,
it is reasonable to expect that both graspable and ¬graspable
could belong to the same FoD, and consequently, fusing con-
flicting evidence from rules r1 and r3 can be handled in a
similar manner.

Overall, a main advantage of the proposed architecture is
that rational choices can still be made in the face of conflict
because of the underlying character of the uncertain logic-
based inference algorithm. That is, the algorithm considers
the rules (conflicting or otherwise) together through the fusion
operator and collectively determines implications. Moreover,
the architecture could be coupled with a higher-level predictive
engine to test expectations against observations and adjust rule
uncertainties.

Our architecture does not preclude, and in fact encourages
the selection of an optimal choice of affordance, especially
when there are many choices available. This is because at any
given moment, the architecture presents a set of affordances
along with uncertainty intervals. It makes no judgment about
which one to select, because that is not the function of the
affordance inference process. Selecting an optimal affordance
to act on is the job of other cognitive functions like planning
and goal management. CALyX provides helpful metrics such
as the λ confidence measure, but it does not specify any further
requirement in regards to selecting certain affordances.

One concern is that the number of rules increase, there is a
potential for higher time and space complexity. The architec-
ture does not explicitly address this beyond suggesting the use

of a limited WM to track applicable rules and only perform
inference on this reduced rule-set.

CALyX is capable of withstanding changes in the environ-
ment and can adjust for these changes over its cognitive cycles.
Short term changes in the environment can impact the agent’s
decision process. The architecture does not preclude adapting
to current demands, even if that means pursuing short term
changes temporarily. This is because, the architecture is more
focused on moment-to-moment or cycle-to-cycle affordance
inference and not more general planning and goal management
issues.

Note that the proposed architecture does not preclude the
agent from operating with a certain degree of autonomy. With
the inclusion of an uncertainty interval and the confidence
measure, not only does the architecture allow the agent to
ask clarification questions when certain aspects are unclear,
but we can also track and quantify the level of autonomy for
the agent based on how frequently it encounters ambiguity. An
agent with one too many uncertain rules or an agent with faulty
sensors that result in uncertain percepts is less autonomous.
This allows for the agent’s general reasoning abilities to be
quantifiable.

We should note that we have implemented our algorithm and
the CALyX architecture in connection with a robotic vision
system, and we have integrated it into the larger DIARC archi-
tecture [32], although these additional aspects are beyond the
scope of this paper.

B. Learning the Rules

Thus far, we have not discussed, explicitly, the origin of the
cognitive affordance rules and how an agent might generate or
learn new rules, because this is not the focus of this paper. Our
focus in this paper, instead, was to demonstrate our affordance
representation format, inference algorithm, and architecture.
Nevertheless, we expect these rules can be learned in a num-
ber of different ways from observation, demonstration and
exploration, and using multiple different modalities includ-
ing vision, natural language and haptic information. The agent
could learn these types of rules from explicit natural language
teaching and instruction as shown by Cantrell et al. [47].
The agent could also learn various rules from observation
through reinforcement learning (RL) methods as shown by
Bouralias et al. [48] or through exploration from methods as
shown by Forestier [49]. Alternatively, the agent could also
acquire these rules through data mining and various associa-
tion rule-mining techniques [50]. We expect rule-learning to
be the subject of future work.

VII. USING INFERRED AFFORDANCES—FUTURE

WORK

The focus of the proposed architecture is affordance infer-
ence (what to do with the inferred affordances is beyond the
scope of this paper). Generally, the architecture leaves open
the possibility for how the affordance information can be
utilized suitably. As discussed before, these affordance compu-
tations are useful in planning problems and in guiding a robot’s
next actions. In fact, the benefits of affordance computations
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extend further and as outlined below, affordance-based reason-
ing may be the basis for all manner of creative reasoning and
sense-making.

A. Novel Tool Use

Consider the example of a robotic assistant helping a human
with an assembly task in which the human has asked the
robot to tighten a loose screw. We would like for the robot
to understand this task and the tools needed from an intuitive
standpoint such that even in the absence of a screwdriver, it
can reason through alternatives and find another substitute.

The robot may know of a number of rules related to its
role as a helper. One rule may be: that if agent X is given a
task to tighten a flat head screw S, and X sees an object O
that has a flat-head edge, then the object O has a tightenWith
affordance. This rule can then be represented in DS-theoretic
uncertain logic a follows:

r0
[αR0 ,βR0 ] :≡

hasFlatEdge(O) ∧ task(X, tighten(S, flat)) =⇒
tightenWith(S,O).

The robot (through attention control and perceptual seman-
tics analysis in CALyX) can look around the room and
determine (within a certain uncertainty interval) whether or
not each of the various objects that it sees has a flat edge

hasFlatEdge(Screwdriver)[0.95, 0.95]

hasFlatEdge(Knife)[0.9, 0.9]

hasFlatEdge(Coin)[0.75, 0.95]

hasFlatEdge(Pencil)[0, 0.95].

The robot can then apply DS-theoretic logical inference
on rules, such as the one above, and infer uncertainties for
the tightenWith(S,O) affordance for each of the five objects.
Based on this inference, the robot can deduce that knives
and coins can be used to tighten screws in the absence of
screwdrivers, but pencils cannot.

B. Creative Problem Solving

An affordance-based approach might shed light on insight
and creative problem solving scenarios that require an ability
to think about a problem from a different angle, [51], or in
our case, a different context. Affordance-based creative rea-
soning approaches are not new and have been attempted by
Olteteanu and Freksa [52]. However, these approaches are lim-
ited for the same reasons as others in the affordance literature,
in that they cannot account for complex affordances in differ-
ent contextual circumstances. We believe that an affordance
representation of the form presented in this paper may assist
in modeling both creative and commonsense reasoning pro-
cesses more effectively. Moreover, when coupled with mental
simulation engines, the agent need not physically actualize the
affordances in order to see their effects, choosing instead to
simulate mentally in a suitable physics engine.

C. Role of Affordances in Sense-Making

Our perception of affordances in our environment enable us
to not only know what we can do with objects around us, but

they also serve to tell a story about our current situation. For
example, chairs and tables in a restaurant allow people to sit
and eat their food. However, a collection of chairs without any
tables in the middle of the restaurant would strike us as a bit
unusual. Our need to make sense of the situation drives us to
dig deeper and learn more about the reasons why there are no
tables. This same need is what allows us to discover problems
when there is a mismatch between what we see and what we
expect to see. Reasoning about cognitive affordances in a more
general way, as outlined in this paper, has the potential to assist
in such sense-making, which can be useful for artificial agents
navigating in the open world.

VIII. CONCLUSION

As part of their interview process, many modern technology
companies show prospective candidates an object they have
never seen before and ask them to describe what they think is
the object’s function. The purpose of the question is to test the
candidate and probe their intellect to identify candidates with
strong mental representations of affordance. Clever answers
are often rewarded and stand as an example of human creativ-
ity. The ultimate goal of our research is to endow robots with
the ability to find creative ways to use and manipulate objects
and their environment.

In this paper, we took the first steps toward our goal and pro-
posed a novel computational framework based on DS theory
for inferring cognitive affordances. We demonstrated how our
framework can handle uncertainties and be extended to include
the continuous and dynamic nature of real-world situations.
We believe that this, much richer level of affordance repre-
sentation is needed to allow artificial agents to be adaptable
to novel open-world scenarios.
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