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Abstract—Human behavior is often guided by social and
moral norms. Robots that enter human societies must therefore
behave in norm-conforming ways as well to increase coordination,
predictability, and safety in human-robot interactions. However,
human norms are context-specific and laced with uncertainty,
making the representation, learning, and communication of
norms challenging. We provide a formal representation of norms
using deontic logic, Dempster-Shafer Theory, and a machine
learning algorithm that allows an artificial agent to learn norms
under uncertainty from human data. We demonstrate a novel
cognitive capability with which an agent can dynamically learn
norms while being exposed to distinct contexts, recognizing the
unique identity of each context and the norms that apply in it.

I. INTRODUCTION

Humans living in social communities function more effec-
tively and peacefully when their actions are guided by a shared
set of norms [1], [2]. The ability to represent and follow norms
has many advantages [3]: Norms simplify action selection
and standardize behaviors across time and generations; norm-
consistent actions are more predictable and understandable;
and norm-consistent actions increase coordination and coop-
eration, thus benefitting the community as a whole.

Some norms are explicitly laid down in laws and regula-
tions, whereas social and moral norms reveal themselves more
implicitly in the actions of community members. When such
actions are observable, humans can learn what they should and
should not do by observing others. When visiting a place of
worship, for example, people can learn implicitly that talking
is impermissible; when socializing at a bar, they realize that
talking is permissible, perhaps even obligatory.

As robots are increasingly deployed in various roles in
society—ranging from household robots (e.g., vacuum clean-
ers, lawn movers) to socially assistive robots (e.g., for elder
care or physical therapy)—they must be prepared to follow
the many social and moral norms that humans adhere to every
day. They must be capable of going beyond pre-programmed
norms and, like humans, learn the extant norms by carefully
observing other members of society.

We aim at developing computational methods for auto-
matically learning norms from observations. This requires
accounting for how norms are represented flexibly, how they
are activated in relevant contexts, and how they can be learned.
Learning and applying context-specific norms is difficult.

Different learning agents may possess different background
knowledge and sensory capabilities, so they may differ in
their norm inferences. For example, while one learner might
conclude, after several observations, that talking is prohibited
in a library setting, another might conclude it is permitted
because a group of people were talking at the checkout
counter. How can we account for these differences among
norm learners and allow distinct agents to communicate and
resolve their differences?

In this paper, we extend a recent theoretical proposal [3]
as well as experimental and preliminary computational work
[4] to introduce novel contributions particularly relevant to the
problem of disparate agents learning norms from observation.
Specifically, we propose a norm representation scheme (shared
by all agents) that introduces a novel deontic modal operator,
which equips deontic logic with context-specificity and un-
certainty by relying on a formal framework called Dempster-
Shafer theory [5]. We also provide an algorithm that learns
norms and honors several critical properties of human norms.
Crucially, we suggest that the proposed approach provides the
necessary computational infrastructure needed for agents to
learn a set of shared norms, as well as to communicate about
and address individual differences.

We first provide background on Dempster-Shafer theory, an
uncertainty processing framework supporting the novel norm
representation. We then present the proposed representation,
initial experimental evidence, and the algorithm for learning
from observation. Finally, we provide a demonstration of the
algorithmic agent’s cognitive capability to dynamically learn
norms while being exposed to distinct contexts.

II. DEMPSTER-SHAFER THEORY BACKGROUND

DS-Theory is a belief-theoretic mathematical framework
that allows for combining pieces of uncertain evidence about
various events to produce degrees of belief about the events.
It has been extensively used in sensor fusion networks, ob-
ject tracking, and network security. In DS-Theory, a set of
elementary events of interest is called Frame of Discernment
(FoD). The FoD is a finite set of mutually exclusive events
Θ = {θ1, ..., θN}. The power set of Θ is denoted by 2Θ =
{A : A ⊆ Θ}. Each set A ⊆ Θ has a certain weight, or
mass associated with it. A Basic Belief Assignment (BBA) is
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a mapping mΘ(·) : 2Θ → [0, 1] such that
∑
A⊆ΘmΘ(A) = 1

and mΘ(∅) = 0. The BBA measures the support assigned to
the propositions A ⊆ Θ only. The subsets of A with non-
zero mass are referred to as focal elements and comprise the
set FΘ. The triple E = 〈Θ,FΘ,mΘ(·)〉 is called the Body of
Evidence (BoE). For ease of reading, we sometimes omit FΘ

when referencing the BoE. Given a BoE 〈Θ,FΘ,mΘ(·)〉, the
belief for a set of hypotheses A is Bel(A) =

∑
B⊆AmΘ(B).

This belief function captures the total support that can be
committed to A without also committing it to the complement
Ac of A. The plausibility of A is Pl(A) = 1−Bel(Ac). Thus,
Pl(A) corresponds to the total belief that does not contradict
A. The uncertainty interval of A is [Bel(A), P l(A)], which
contains the true probability P (A). In the limit case with no
uncertainty, we get Pl(A) = Bel(A) = P (A).

DS-Theory extends Bayesian theory in several ways. First,
it allows for assigning probabilistic measures to sets of these
hypotheses allowing it to consider ignorant and ambiguous
information. Second, DS-theory does not require assuming any
prior distributions, which is useful when priors are difficult
to justify. Third, DS-theoretic uncertainty generally refers to
epistemic uncertainty and corresponds to beliefs held by agents
about the world.

One recent development in DS-theory is an evidence fil-
tering strategy. It has upgraded Dempster’s original rule of
evidence combination to accommodate the inertia of avail-
able evidence and address some challenges with respect to
conflicting evidence [6]. In particular, consider the BoEs
E1 = 〈Θ,F1,m1(·)〉 and E2 = 〈Θ,F2,m2(·)〉, and a given
A ∈ F2. The updated belief (from iteration t to t+1) Belt+1 :
2Θ → [0, 1] and the updated plausibility Plt+1 : 2Θ → [0, 1]
of an arbitrary proposition B ⊆ Θ are 1:

Bel(B)E1t+1 = p1 ·Bel(B)E1t + p2 ·Bel(B|A)E2t (1)

Pl(B)E1t+1 = p1 · Pl(B)E1t + p2 · Pl(B|A)E2t (2)

where p1, p2 ≥ 0, p1 + p2 = 1. The conditionals in the
above equations are defined by Fagin-Halpern conditionals,
which extend Bayesian conditional notions [7]. That is, for a
BoE E = 〈Θ,F ,m(·)〉, A ⊆ Θ and an arbitrary B ⊆ Θ, the
conditional beliefs and plausibility are given by 2:

Bel(B|A)E = Bel(A∩B)E/ [Bel(A∩B)E+Pl(A\B)E ] (3)

Pl(B|A)E = Pl(A∩B)E/ [Pl(A∩B)E +Bel(A\B)E ] (4)

We build on this development to provide a unified probabilis-
tic norm learning framework, grounded in a belief-theoretic
approach.

III. CONTEXT-SPECIFIC, BELIEF-THEORETIC NORM
REPRESENTATION

Surprisingly, there are few cognitive science approaches to
the central phenomenon of norms. Logical and specifically

1We specify the BoE superscript for Bel() and Pl() as needed to be
precise, especially when we are combining two distinct BoEs.

2The forward slash (“/”) represents division, and the backward slash (“\”)
represents set difference.

deontological approaches have been proposed to formally
represent a system of norms [8], [9], [10]. These are important
starting points, but their formalizations do not necessarily
capture the properties that characterize human norm represen-
tation and learning.

A. Mathematical Formulation of a Norm System

We define the logical form of norms as follows:
Definition 1: (Context-Specific Norm). A context-specific

norm N is an expression of the form:

N def
= DCA (5)

for a formal language L together with deontic modal operators
for obligatory (O), forbidden (F) and permissible (P), respec-
tively (collectively, denoted by D). C ∈ L represents a context
condition, and A ∈ L represents an action or state. The norm
expression states that in context C the action or state A is
either obligatory, forbidden, or permissible, or not obligatory,
forbidden or permissible.

This type of norm definition extends an approach to nor-
mative reasoning and norm formalism that some of us have
taken previously [3], [8], [9], [4]. We further extend the above
format by explicitly accounting for uncertainty about a norm
representation as follows:

Definition 2: (Belief-Theoretic Norm). A context-specific
belief-theoretic norm is an expression of the form:

N def
= D[α,β]

C A (6)

where D[α,β]
C is an uncertain context-specific deontic operator

with [α, β] representing a Dempster-Shafer uncertainty interval
for the operator, and 0 ≤ α ≤ β ≤ 1. An uncertain deontic
operator reduces to a standard deontic operator when there is
no uncertainty, i.e., when [α, β] = [1, 1]

Example 1: Consider an agent reasoning about actions it
may or may not perform in a library. We can represent this
scenario as a Belief-Theoretic Norm System, T , as follows

N1
def
= O[0.9,1]

Lib quiet

N2
def
= P[0.8,0.95]

Lib reading

N3
def
= F[0.9,1]

Lib yelling

N4
def
= O[0,0.3]

Lib talking

N5
def
= F[0.3,0.6]

Lib talking

(7)

The norms in this example have intuitive semantics. They
state that in the library (i.e., Lib), the agent is obligated (O) to
enter a certain state (quiet) or is prohibited (F) from perform-
ing a certain action (talking), each with associated uncertainty
intervals. The center of the interval denotes the point estimate
of subjective certainty for the believed applicability of the
deontic operator, and the width of the interval denotes the
level of evidence for that belief. Norm representations N1,
N2, and N3 have narrow uncertainty intervals close to 1,
indicating strong support for an agent’s confident belief (e.g.,
in the obligation to be quiet in the library). Norm N4 also
has a narrow uncertainty interval but a center close to zero,



indicating strong support for the belief that the operator does
not apply. Finally, N5 has a wider interval and is centered
near 0.5, indicating little evidence for either the belief in the
norm’s applicability or the belief in its inapplicability.

A belief-theoretic norm system of this form allows the
separation of norms from the evidence for those norms. The
evidence may come in different forms across different sensory
modalities and from different sources. The norm system dis-
plays the agent’s current level of belief about the set of norms,
in light of the available evidence.

An agent may have a vast set of norm representations, but in
any given situation, the agent is unlikely to reason with every
one of those norms. Instead, the agent may consider a subset
of the system, likely including only norms that are applicable
to the specific context in which it finds itself. We capture this
intuition in a norm frame, defined below.

Definition 3: (Norm Frame). A norm frame NΘ
k is a set

of k norms in which every norm has the same set of context
conditions and the same deontic operator. Thus, in Example 1,
norms N3 and N5 would constitute a norm frame.

We define a norm frame in this way because it allows for
cognitive modeling in a situated and contextual manner—that
is, reasoning about behavior relevant to a specific situation.
This context-specificity provides a convenient constraint that
can help simplify computation and better capture properties of
human norm representations, as introduced next.

B. Human Data Supporting the Proposed Representation

We conducted two experiments (labeled “generation” and
“detection”) on human norm representations. They illustrate
some of the cognitive properties of norms and provide sup-
port for the proposed formal representation, particularly the
context-sensitivity of these norms.

1) Methodology: In the generation experiment [11], par-
ticipants (n = 100 recruited from Amazon Mechanical Turk,
AMT) inspected four pictures, one at a time, that each depicted
an everyday scene (e.g., library, jogging path, board room).
While inspecting each picture, participants typed actions that
one is either “allowed” to perform in this scene (Permissions),
or is “not allowed” to perform (Prohibitions), or is “supposed”
to perform (Prescriptions). The resulting verbal responses were
analyzed for agreement (i.e., how many people mentioned a
given action for a given scene) and context distinctiveness (i.e.,
whether an action mentioned as permitted in one scene was
also mentioned as permitted in another scene). The researchers
identified, for each scene, the seven actions most often men-
tioned as being permitted, and likewise the seven most often
mentioned as being prescribed and as being prohibited. These
top seven actions within each norm type and each scene were
critical elements in the detection experiment.

In the detection experiment, participants (n = 360 recruited
from AMT) viewed the same pictures as in the generation
experiment. Their task was to consider each scene and judge
14 actions, one at a time, for whether they were permitted (or
prescribed, or prohibited) in the particular scene. Of the 14
actions assigned to a given scene and a given norm type (e.g.,

Library/permitted), 7 were the previously selected top seven
actions for that scene and norm type; the other 7 were drawn
from top seven actions mentioned in other scenes, but under
the same norm type. Thus, the latter actions were still frequent
responses to the same norm probe, but in different contexts.

2) Results: A key result from these studies was that the
norms applicable to the various scenes showed remarkable
context differentiation. Among the top seven prescribed ac-
tions for a given scene, aggregated over eight scenes), 95%
were uniquely mentioned in one scene; for permitted actions,
this rate was 84%.

IV. LEARNING NORMS

A. How Do People Learn Norms?

In learning social and moral norms, people deal with multi-
ple norm types (permissions, prescriptions, prohibitions), use
different learning mechanisms (e.g., observation, instruction),
and take input from numerous sources. Here we focus on the
process of learning permission norms from simple observation,
using responses from the sample of community members in
the above detection experiment. Our main goal is to put our
proposed computational framework to the test.

Consider a person who has never spent time in a library.
Upon entering one for the first time, the person observes
several people reading, studying, and a few whispering. Some
sit at computers, one is eating while sitting in an armchair,
although there is a sign that says “No food or drink in the
library.” Our observer also sees several people at the checkout
counter, subsequently exiting the library, where another sign
says “Don’t forget to check out.” Briefly, a younger person
runs alongside the stacks but then sits down next to an adult.

The number of people performing each behavior, their
age, expertise, appearance, perhaps responses from others,
and the meaning and force of various physical symbols will
all contribute to the speed and confidence with which our
protagonist learns the norms of a library. Moreover, there
may be many overlapping (and even conflicting) contexts in
the library, from the general library setting to the checkout
counter to the restrooms and conference rooms. Norms may
not apply with equal deontic force in these different settings.
While learning the library norms, our learner must dynamically
adjust to these contextual variations.

Below we offer a data representation format that incorpo-
rates these and other properties of the norm learning process.

B. Data Representation Format of Norm Learning

Consider a set S = {s1, . . . , sn} of n evidence sources.
For example, an evidence source si could be a student in the
library, the librarian, or a sign at the entrance. To simplify, we
are interested in learning about a norm frame NΘ

k comprising
k norms (out of a larger possible set) that all share the same
deontic type (here, permissions) and the same general context
precondition (here, library).

Let an endorsement ei,j be the ith data source’s endorse-
ment of the jth norm, where e ∈ {0, 1, ε}. The value ei,j
is a form of truth assignment, indicating whether the source



endorses the norm to be true (1), false (0) or unknown (ε).
For example, an observation that a student is reading can be
interpreted as showing that this student endorses the norm
N2 to be true in this context, hence ei,N2 = 1. The set Φsi
represents a given source’s finite set of endorsements within
a given norm frame, such that |Φsi | = k.

Informally, for a set of norms in a given context and for a
particular source, we can learn about that source’s endorsement
of each norm; if we also assign a weight (e.g., reliability,
expertise) to the source, we form a data instance. Multiple
data instances (i.e., evidence from multiple sources) form a
data set. More formally:

Definition 4: (Data Instance). A data instance d =
〈NΘ

k , si,Φsi ,msi〉 is a tuple comprising a norm frame NΘ
k ,

a specific source si, a set of endorsements Φsi provided by
that source, and a mass assignment msi corresponding to the
amount of consideration or reliability placed on source si for
this instance, including its reliability in detecting context.

Definition 5: (Dataset). A dataset D is a finite set of n data
instances {d1, . . . , dn}.

Some of the desirable properties of the proposed data
representation format are that we can accommodate various
types of sources (e.g., behavior, verbal responses, signs and
symbols), differential source reliability (mass), order effects
(updates can be tuned, if necessary, to the order of received
data), and missing or imprecise information (we use ε to
represent ignorance). The format can also accommodate un-
known prior probability distributions (it does not require any
priors) and varying norm dependencies (e.g., we can capture a
correlation between the prohibition to yell and the prohibition
to talk). Finally, the format can be extended to other learning
mechanisms, such as verbal instruction or trial and error.

C. Automated Learning of Experimental Data

We can now apply this representation format to the detection
data we introduced earlier. The detection experiment featured,
for each scene, a norm frame NΘ

k with k = 14 potentially
permissible actions, where half of the potential actions had
been specifically identified as permitted in this scene and the
other half as permitted in other scenes. Each participant, si,
indicated whether each of 14 actions was in fact allowed in this
scene, providing responses of yes (1) or no (0) or no response
(ε), thus forming a set of endorsements Φsi , with |Φ| = 14.
In this particular case we treat all sources as equally reliable,
hence carrying identical msi weights.

With these representations in hand we can formally define
the norm learning problem within our framework and set the
stage for an algorithm to analyze evidence and derive a norm
structure for a given context in a given community. We remind
the reader that, according to Definition 2, any norm (e.g., with
respect to reading in a library) has an uncertainty interval [α, β]
associated with it, which reflects the quality and consistency of
the evidence for a given norm to hold. The learning problem
thus becomes a parameter learning problem for discovering
the values of the uncertainty interval for each norm in a norm
frame:

Definition 6: (Norm Learning Problem). For a norm
frame NΘ

k and dataset D, compute the parameters
α1, . . . , αk, β1, . . . , βk of that norm frame.

As noted earlier, each data instance d represents a potential
arrangement of true and false values for each of the norms in
a frame. Setting aside the possibility that ei,j = ε, each data
instance thus provides a k-length string of 1s and 0s—a given
participant’s response string in the detection experiment and a
sample of the normative endorsements in the given community.
The norm learning algorithm represents each string as a hy-
pothesis in a set of hypotheses (termed Frame of Discernment
in Dempster-Shafer theory) and assigns uncertainty parameters
to each norm, updating those values as it considers each new
data instance. Algorithm 1, displayed below, implements this
form of norm learning from a human dataset.

Algorithm 1 getParameters(D,NΘ
k )

1: D = {d1, . . . , dn}: Dataset containing n data instances for a
norm frame

2: NΘ
k : An unspecified norm frame containing k norms N

3: Initialize DS Frame Θ = {θ1, . . . , θ2k}
4: m(Θ) = 1
5: for all d ∈ D do
6: for all N ∈ NΘ

k do
7: Set learning parameters p1 and p2

8: Bel(N|d) = Bel(N∩d)
Bel(N∩d)+Pl(d\N )

9: Pl(N|d) = Pl(N∩d)
Pl(N∩d)+Bel(d\N )

10: Bel(N )new = p1 ·Bel(N )prev + p2 ·Bel(N|d)
11: Pl(N )new = p1 · Pl(N )prev + p2 · Pl(N|d)
12: end for
13: Set frame Θ with Bel(N )new and Pl(N )new

14: end for
15: for all N ∈ NΘ

k do
16: αN ← Bel(N )
17: βN ← Pl(N )
18: end for
19: return α1, . . . , αk, β1, . . . , βk

The algorithm iterates though each data instance in the
data set (line 6) and, per instance, through each norm in the
norm frame (line 7). For each iteration, we first set the hyper-
parameters p1 and p2 (line 8) that specify how much weight
the algorithm will place on previous learned knowledge (p1)
and on each new data instance (p2). These hyper-parameters
are then used to compute a conditional belief and plausibility
for a norm given that particular instance of data (lines 9,10).
The conditional beliefs and probabilities then yield an updated
belief and plausibility for each norm (lines 11, 12). Finally,
the algorithm updates the uncertainty interval for each norm
with the new belief and plausibility values.

The result is a set of belief-theoretic norms (norms accom-
panied with uncertainty intervals), where the width of the
uncertainty interval indicates the amount of support for the
norm (which may vary, for example, as a function of number of
respondents in the human data sample), and where the center
of the interval corresponds to the estimated endorsement of
the norm by the human respondents (approaching 0 → not
permitted; approaching 1 → permitted).



D. Evaluation: Dynamic Context Shifting

To evaluate the algorithm, we selected two smaller norm
frames—six permission norms each for the contexts of library
and boardroom. We wanted to test the context-specificity of
the norms and constructed the frames such that four permitted
actions (reading, talking, walking, and listening) were the
same in each context, albeit differentially endorsed in the
two contexts (e.g., walking was hardly permissible in the
boardroom but permissible in the library). Thus, the algorithm
had to track the norm value of a given action not in general,
but conditional on the specific context. We also included two
permitted actions for which we had data for one context but
not for the other: using computers in the library and drinking
in the boardroom. This allowed us to evaluate the algorithm’s
ability to handle ignorance and incomplete information.

The algorithm also had to track how these norms are learned
when observations are made in dynamic situations involving
changing contexts and general contextual uncertainty. In an
ideal learning scenario, the agent would obtain a dataset
containing a collection of observations from a single context.
The generation experiment described earlier provided such
an ideal dataset. However, learning in the real world is far
less perfect; data are often obtained in a streaming, unfolding
manner through a series of observations made during a certain
time window. Observations are made in context, the identity
of which might be uncertain and may even change over time.

Consider the example of a norm-learning agent moving
through a library between the reception, stacks, and through
various conference rooms. At any given moment, the agent
may not be entirely certain if it is in one context or another.
As it approaches a boardroom, near the threshold, the agent
may not be sure if it is within the confines of the boardroom
context or within the confines of the general library context.
Normative behavior is often learned in this messy manner
through observations in changing and uncertain contexts.

Moreover, this contextual uncertainty can influence the
agent’s normative beliefs themselves, which in turn can result
in deviations in normative behavior. Two identical agents
who observe the same sequence of actions but differ in their
reliability of identifying the context they are in will acquire a
different set of norms. The algorithm must be able to track
these variations in natural learning and should account for
differences in normative beliefs between different agents.

For our experiment, we consider two agents (Agent 1 and
Agent 2) that learn norms by observing actions in a library
and a boardroom. For simplicity, we stipulate that at any given
moment an agent can either be in the general library context
or in a boardroom context. Also, we stipulate that the agents
are moving from the general library area into a boardroom.
Thus, they first observe actions in a library and then actions
in a boardroom. However, the agents differ in their ability to
accurately detect the context they are in.

Agent 1 has a reliable context detector and can, with
complete certainty, identify its current context. Agent 2 has
a more unreliable context detector, at least at the threshold

between the general library area and a boardroom. Thus, Agent
2 is initially certain that it is in the library, but as it moves
toward the boardroom it becomes uncertain about what context
it occupies. Once it is completely in the boardroom it is again
certain of its context.

We expect that the learning algorithm can capture not only
the context dependency of the norms but also the agents’
different normative beliefs (as a result of their different context
detection abilities). We further expect that an agent that is
more unsure of its context is also less certain about the
applicability (truth or falsity) of a given norm. Moreover,
we expect that because the agent is unsure of its context at
the library-boardroom threshold, it will attribute observations
during this time to both contexts (albeit to different degrees),
thereby generally acquiring more data instances for norms in
each context. This would then have the effect of strengthening
the agent’s belief in the norm that it learns, allowing for a
narrowing of the uncertainty interval.

Figure 1 illustrates the success of the learning algorithm
in both capturing the context sensitivity of norms and the
differential effect of learning norms in different situations. We
display four plots each showing single runs of the algorithm
for whether the action of “talking” is permissible. The results
show a wider uncertainty interval at first, but narrowing as the
number of data instances increases, which is consistent with
a hypothetical agent roaming the library and then entering
a boardroom. We also performed these single runs for the
remaining 5 actions over both contexts for both agents. The
results at the end of these runs are shown in Table I. Again,
the uncertainty intervals [α, β] represent the degree of support
for the rule in the observations (α) and the total belief that
does not contradict the rule (β).

As predicted, Agent 1’s learning of the library norm (Figure
1, top left) proceeds by converging to an optimal estimate of
the community’s norm endorsement but then holds steady once
the agent has left the library context and enters the boardroom
context. Conversely, this agent’s learning of the boardroom
norm (bottom left) begins to converge only once the agent
has entered the boardroom. The algorithm approaches the
descriptive statistics from the experimental data (which it was
not given), while maintaining a level of uncertainty that reflects
the imperfect agreement in the data.

In the case of Agent 2 learning the library norm (top right),
because it is uncertain about the context in the middle of the
run (positive sloping part of the red-dotted line), the agent
continues to adapt its learning, finally settling on an interval
towards the end of the run, which is a later convergence
than that of Agent 1. Conversely, the agent’s learning of the
boardroom norm (bottom right) begins converging earlier than
Agent 1. The result of the uncertainty in context is at the end
of the run, where Agent 2 settles on an uncertainty interval
that does not include the descriptive mean in the data. As
predicted, this deviation suggests that Agent 2’s learning at the
library-boardroom threshold was influenced by both contexts,
thereby increasing both the truth of the norm in the library and
the falsity of the norm in the boardroom. Moreover, because



Fig. 1. Single runs of two Agents moving from a general library context
towards a boardroom context. The red-dotted line shows the agent’s certainty
about its context as it moves. The narrowing shaded regions indicate converg-
ing uncertainty intervals as new data instances are processed. Filled circles
represent the descriptive statistics from the experimental data, indicating actual
norm endorsement averages among participants—the proportion of partici-
pants who answered yes to the question: “Is this action allowed/permitted
here?” The algorithm displays flexibility in learning normative rules from
observation for various agents with different detection capabilities.

threshold data is used in both contexts, the number of data
points considered are increased, providing a tighter interval.

Agents equipped with the proposed learning methodology
can not only dynamically learn from observations in evolving
environments but can begin addressing mutual differences
in their background knowledge and sensory capabilities. For
example, an agent (such as Agent 2) can compare its learned
uncertainty interval with human consensus statistics; that way
it can either correct its beliefs or refine its context detection ac-
curacy by attending to aspects of the environment it previously
overlooked. Agents can also directly compare and contrast
uncertainty intervals. For example, agents can agree if their
confidence intervals overlap, or if the center of their intervals
are close to each other. That said, being able to perform this

TABLE I
UNCERTAINTY INTERVALS FOR AGENTS 1 AND 2.

Norm Consensus Agent 1 Agent 2

P[α,β]
Lib reading 1.0 [0.63, 1.0] [0.75, 0.97]

P[α,β]
Board reading 0.93 [0.59, 0.95] [0.73, 0.95]

P[α,β]
Lib listening 0.96 [0.61, 0.98] [0.77, 0.99]

P[α,β]
Board listening 1.0 [0.63, 1.0] [0.76, 0.99]

P[α,β]
Lib talking 0.42 [0.27, 0.64] [0.57, 0.78]

P[α,β]
Board talking 1.0 [0.62, 1.0] [0.69, 0.91]

P[α,β]
Lib walking 0.91 [0.57, 0.94] [0.45, 0.67]

P[α,β]
Board walking 0.32 [0.21, 0.57] [0.33, 0.55]

P[α,β]
Lib usingComputers 0.95 [0.60, 0.96] [0.36, 0.98]

P[α,β]
Board usingComputers - [0, 1] [0.13, 0.99]

P[α,β]
Lib drinking - [0, 1] [0.29, 0.89]

P[α,β]
Board drinking 0.72 [0.44, 0.81] [0.44, 0.81]

sort of introspection would additionally require the agents to
be aware of their differences, a challenge that is beyond the
scope of this paper but the subject of future work.

V. CONCLUSION

In this paper we presented a formal representation of norms
and a learning algorithm, with uncertain deontic operators
and Dempster-Shafer theory. The representation captures the
context specificity of norms that experiments suggest are
strongly present in humans. Our generalizable data format
allows artificial agents to learn norms from different sources
in varying contexts using disparate sensors. The proposed
approach can also be highly useful to cognitive infocommuni-
cation [12] between humans and artificial agents. In particular,
the shared norm representation format will make interactions
with machines more intuitive for humans, and they may avail
themselves of the machines’ sensory channels, which could
enhance human norm perception and learning [13].
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