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Abstract—Intelligent systems for aviation need to be capable
of understanding and representing anomalous events as they
happen in real-time. We explore this problem with a proof of
concept framework based on contextual one-shot learning, run
on a human-in-the-loop flight simulator. We ran a total of 24
trials, with variations in training, fliers, and set values within the
framework, and found that our framework was able to detect
and reason about anomalies in all trials. In future work, we
would like to explore different heuristics for anomaly reasoning,
including nonlinear interactions of cockpit data, and feedback
from the flight crew through psychophysiology sensors or natural
language interactions.

Index Terms—symbolic, aviation, knowledge, representation

I. INTRODUCTION

Intelligent systems are becoming increasingly present in avi-
ation, with next generation systems like the NASA’s Intelligent
Flight Control System (IFCS) and the Federal Aviation Ad-
ministrations Decision Support System (DDS), both of which
have helped to optimize aircraft and pilot performance through
the use of data driven approaches. While these systems have
been shown to increase safety and efficacy of missions, they
remain limited in their data-driven approach to synthesizing
intelligence, which employs black-boxed methods that are
not conducive to acquiring new knowledge representations,
or handling anomalous circumstances. There have been some
efforts to resolve this problem, both in aviation and non
aviation contexts [5]. The general problem of augmenting data
driven paradigms with symbolic reasoning systems to resolve
the knowledge acquisition issue has been explored in Neural
Symbolic Learning and Reasoning. However, to the best of
our knowledge, there have been no frameworks implemented
within the aviation domain which employ symbolic reason-
ing measures to acquire new knowledge representations. We
explore this problem specifically by looking at the anomaly
detection and reasoning domain [1], [2], [3]. This area of
research looks mostly at domain specific applications [4],
and focuses almost fully on the anomaly detection portion of
research. In our research, we implement a proof of concept

framework for anomaly detection and reasoning in a real-
time, human in the loop aviation setting. The framework is
generalizable across various aviations contexts, and shows
promise for the general problem of knowledge acquisition in
the cockpit setting [18].

This work was motivated by a vision to build a decision
support system for the aviation domain. The system would
be able to support the pilot at a level that is comparable or
better than that which is currently provided by the copilot.
The system would be equipped with the ability to reason like
a human, while also leveraging the computational power of
a machine. The implementation of this system is less trivial
than it may seem, as it would require both statistical and
non statistical paradigms to capture the human and machine
capabilities. Let us consider the necessary components for this
system:

1) Subject matter expert (SME): The system would
need to be able to answer any subject matter specific
questions that the pilot may have. This knowledge base
would require all information available in commercial
airline flight manuals, including algorithmic maneuvers
or situational instructions. The SME capability could be
engineered using data driven statistical means, leverag-
ing technologies such as IBM Watson.

2) Reasoning based on regularities of flight: This ca-
pability would aid in real-time reasoning by using past
flight data as a means for reasoning and prediction. This
portion could be implemented using data driven statis-
tical means which leverage pattern recognition methods
for predictive capabilities.

3) Reasoning in anomalous circumstances: The anomaly
handling capability would aid the pilot in circumstances
that are fully or partially novel. In these circumstances,
there is no past data or information in flight manuals
available to support reasoning. Quite trivially, this por-
tion of the system could not be implemented using a
data driven statistical approach.



Our research focuses on developing a framework and proof
of concept for the third portion of the system. We first develop
a methodology for detecting anomalies and reasoning about
why they occurred. Once a sufficient explanation for their
occurrence is developed, the system creates a knowledge
representation of the anomalous circumstance in order to be
able to handle any similar future occurrences of the anomaly.

II. PRELIMINARIES

To begin, we review a set of preliminary concepts used to
construct our framework and proof of concept implementation.

A. One-Shot Learning

One shot learning is the process of learning something
from one exemplar. In most instances of one-shot learning
applications, the concept or data point to be learned is non
trivial, in that a rich knowledge representation is required
for success [10]. For example, in image processing, one-shot
learning would exist as learning an image classifier using just
one training sample [11]. One-Shot Learning is challenging
to accomplish using data driven paradigms, which rely on
data to inform output [16], [17]. Typically, these paradigms
use techniques such as pattern recognition or the training
of classifiers as ways to generate accurate output. One-shot
learning is well suited for instances which rely on little to no
data, or sparse/unreliable data sets, In these cases, knowledge
representations are instead derived by using context, relevancy,
and other situational data.

B. Anomalies vs Outliers

We define abnormalities as points which deviate from
what is expected. Within the context of our framework, an
abnormality would exist as any instance of a scenario in flight
where an observed action is at odds with a predicted action. We
further classify points as either outliers or anomalies. Outliers
are irregularities which are not important, but rather present
themselves in a way that is similar in nature to noise, or
statistical outliers. In this way, outliers provide no interest
to the analyst, but rather acts as a hindrance to analysis.
Anomalies are those points which deviate from an expected
outcome in a way that is of interest to the analyst. These
irregularities are of particular importance, usually calling for
an actionable outcome. Within the context of our framework,
this actionable outcome is discovering what saliency point is
responsible for the anomaly, and creating a new context with
associated rule representations to characterize and handle that
novel scenario.

III. AVIATION EXAMPLE

Here, we review a basic aviation example to describe how
the preliminary concepts will be used in our framework.
Our example will also prime our review of the Knowledge
Acquisition Framework in the following section.

A. The ”Go-Around” Scenario

Suppose it is the case that we have a context C, where an
aircraft is unstable below 1000ft (304.8 m) on its approach.
Formally, C = {UNSTABLE, SUB1000FT}. Furthermore, it
has been the case that in 99 instances, C =⇒ GA where
GA is the outcome that the pilot has executed a Go-Around
maneuver. However, in 1 instance, it has been the case that
C =⇒ L where L is the outcome that the pilot has executed a
landing. This set of implications are problematic in that in the
case of C, it is impossible for both GA and L to hold, and thus,
we must develop a means for deterministically deciding when
each rule should apply [13], [15]. Using frequency values
alone, we generate the following:

C =⇒ GA0.99

C =⇒ L0.01

(1)

the case of C =⇒ L0.01, our interpretation says ”In the
context C, L should hold 1% of the time.” However, if it is
the case that in the 1 instance, an anomalous circumstance took
place in which executing a landing was in fact very appropriate
(for example, emergency landing due to some unprecedented
circumstances), then we know that there is a much greater
than 1% chance that L should hold. So although we know
C =⇒ L only held 1% of the time, we are uncertain of this
prediction probability. Thus, using probability values alone is
problematic in that it conflates frequency of occurrence with
confidence in whether a rule should hold.

To resolve this issue, we generate rules in the following
form:

C =⇒ GA[0.89,0.99]

C =⇒ L[0.01,0.11]

(2)

Each rule has an associated interval, wherein lies the true
probability for the hypothesis. The width of the interval around
this probability value expresses the certainty on the probability
value. A larger interval corresponds to a greater uncertainty
whereas smaller interval corresponds to a smaller uncertainty.
The intervals associated with each rule are contained by the
interval [0,1]. We call these intervals the Dempster-Shafer
(DS) intervals. In the next section, we describe how such
intervals are generated.

B. Rule Learning with Dempster-Shafer Theoretic Framework

In order to characterize the predicted outcomes of being in
a context, our framework relies on Dempster-Shafer Theory
(DST). DST is a generalization of the Bayesian uncertainty
framework, that allows for processing of uncertainty and
ignorance on pieces of evidence supporting a claim [6], to
produce a degree of belief of the existence of the claim
[12]. DST is useful in cases where there is a lack of data
and/or distributional information about the data to inform the
existence of claims, which is typically needed in a probabilistic
paradigm [7]. In our framework, we are able to leverage
DST to translate our cockpit data (which we call evidence



measures) into a flight-based prediction. More specifically,
we use cockpit data to build contextual representations, and
generate rules based on those contexts which are quantified
using DST .

DST requires a scenario which contains a set of mutually
exclusive hypotheses h1, h2, . . . , hn which collectively are
referred to as the Frame of Discernment (FoD), denoted by
Θ, representing all possible states of the system, and pieces
of evidence e1, e2, . . . , en to support those hypotheses. DST
assigns a mass value to each member of the power set of
Θ, denoted 2Θ. The mapping m : 2Θ =⇒ [0, 1] from
combinations of hypotheses to mass values using pieces of
evidence is called the basic belief assignment (BBA) where
m(∅) = 0 and ΣA⊂Θm(A) = 1. The BBA is responsible for
distinguishing probabilities of the occurrence of a hypothesis
from the evidence measures available [8]. The elements of A
with non zero mass are called the focal elements (FΘ), and the
triple ε = Θ, FΘ,mΘ(·) is called the Body of Evidence (BoE).
Collectively, the mass values generate a lower bound called the
belief (Bel), and an upper bound called the plausibility (Pl),
on the probability of a set in 2Θ occurring:

Bel(A) = ΣB⊂AmΘ(B) (3)

Pl(A) = ΣB∩AmΘ(B) (4)

where A ⊂ 2Θ. The belief is representative of the amount
of justifiable support given to A, where the plausibility can
be thought of as the maximum amount of specific support
that could be given by A if further justified [8]. The interval
[Bel(A), P l(A)] is defined as the evidential interval range of
A and the value Pl(A)−Bel(A) as the uncertainty associated
with A (Un(A)). Each piece of evidence contributes to the
mass values of one or all hypotheses in Θ, and are combined
to formulate the collective:

m(h) =
ΣA∩B=H 6=φm(A) ·m(B)

1− ΣA∩B 6=φm(A) ·m(B)
(5)

for all h,A,B ⊂ Θ. We call this the Dempster-Shafer Rule of
Combination (DRC), which states that for any hypothesis H ,
we combine the evidence which informed A with that which
informed B.

1) Evidence Updating Strategy: We replace DRC with
an evidence filtering strategy, which was developed as an
upgrade to DRC to address some of its shortcomings with
conflicting pieces of evidence [9]. This strategy is better suited
for handling the inertia of available evidence as it becomes
available, and its use of conditionals handles the combination
of partial or incomplete information well. Specifically, given
BoE1 = {Θ, F1,m1} and BoE2 = {Θ, F2,m2}, and some
set A ∈ F2, the updated belief Belk+1 : 2Θ 7→ [0, 1], and
the updated plausibility Plk+1 : 2Θ 7→ [0, 1] of an arbitrary
proposition B ⊆ Θ are:

Bel(B)(k + 1) = αkBel(B)(k) + βkBel(B|A)(k) (6)

Pl(B)(k + 1) = αkPl(B)(k) + βkPl(B|A)(k) (7)

where αK , βk ≥ 0 and αk + βk = 1. The conditional
used above is the Fagin-Halpern conditionals which can be
considered an extension of Bayesian conditional notions [14].
Given some BoE = {Θ, F,m}, A ⊆ Θ s.t. Bel(A) > 0 and
an arbitrary B ⊆ Θ, the conditional belief Bel(B|A) : 2Θ 7→
[0, 1] and conditional plausibility Pl(B|A) : 2Θ 7→ [0, 1] of B
given A are:

Bel(B|A) =
Bel(A ∩B)

[Bel(A ∩B) + Pl(A−B)]

Pl(B|A) =
Pl(A ∩B)

[Pl(A ∩B) +Bel(A−B)]

(8)

IV. KNOWLEDGE ACQUISITION FRAMEWORK

Next, we review the knowledge acquisition algorithm in
detail.

A. Central Elements

Our framework examines three central elements (CE) in
order to detect abnormality points, and to further refine them
as either outliers or anomalies. The central elements include
the assumed context (C), the predicted outcome (P) of being in
C, and the currently observed outcome (O) that is happening
while in C (CE = {C, P, O}). We define CEconf as the set
of confidence values for the elements of CE, characterizing
the degree of certainty that a given element holds (CEconf =
{Cconf , Pconf , Oconf} ∈ [0, 1]). We define a threshold value
T ∈ [0, 1], such that

e < T =⇒ e == LOW

e ≥ T =⇒ e == HIGH
(9)

where e ∈ CEconf . Given these preliminaries, we describe
abnormality, outlier, and anomaly detection in the following
way:
• Abnormality: P 6= O
• Outlier: P 6= O
• Anomaly: P 6= O ∧ (Cconf == HIGH) ∧ (Pconf ==
HIGH) ∧ (Oconf == HIGH)

Here, any abnormality point which is not an anomaly is
an outlier. In our aviation example, this implies that C =
{UNSTABLE, BELOW1000FT} =⇒ L is only anomalous
if there is a high confidence that C holds, that GA should
hold as a consequence of being in C, and that L is being
observed instead. With a weak confidence on any of these
three values in the P 6= O scenario (or in this case, GA 6= L),
the framework instead flags an outlier.

B. Rule Refinement

Once an anomaly point is detected, the algorithm makes the
assumptions that there is a salient feature that is occurring in
the context of the anomaly, that was not otherwise present in
the assumed context. That is, the anomaly posits that some
additional factor F has caused the discrepancy in P and O.
Using our aviation example, the algorithm further refines the
rules as follows:



Fig. 1. VISTAS simulator, NASA Langley Research Center, Hampton VA

C ∧ ¬F =⇒ GA

C ∧ F =⇒ L
(10)

The framework generates a set of basic heuristics to identify
F using cockpit data. Specifically, a basic feasibility region is
generated using past flight data, extracting the minimum and
maximum values of all cockpit data fields over every past
flight. For example, it may pull the highest altitude that the
aircraft has ever reached, or the lowest wind speeds that the
aircraft has ever encountered. We call these the critMin and
critMax values. Likewise, we calculate deltaMin and deltaMax
values, which record the largest change in a data field over
a set window of time. For example, the biggest change of
speed of the aircraft over a window of 50 Hz. The moment an
anomaly is incurred, the system employs one-shot learning by
comparing the cockpit data at the time of occurrence against
a feasibility region, to figure out which features exceed the
bounds of the feasibility region.

V. PROOF OF CONCEPT

A. Scenario

We validated our Knowledge Acquisition framework with a
proof of concept model run in a rapid prototyping simulator
at NASA Langley Research Center in Hampton VA. The
experiment was run in a real-time, human in the loop setting.
The selected scenario involved the landing phase of flight of
a Boeing 757 descending into the Reno-Tahoe International
Airport, which sits at 4450 ft above sea level. The trails started
at 8000 ft (2438.4 m) altitude, and each participant was asked
to force a landing in an unstable configuration. The simulator
ran at 50 Hz, and the Knowledge Acquisition algorithm ran
at 1 Hz (each time step = 1Hz), pulling cockpit data at each
time step. The trials consisted of two phases; A training phase
(Phase 1), and a knowledge acquisition phase (Phase 2), with
a total of 24 trials across 3 participants. participant 1 flew
trials 1-12, participant 2 flew trials 13-17, and participant 3
flew trial 18-24. Trials 13, 14, 15, and 21 were removed due
to experimental error.

Fig. 2. Real-time simulation running alongside Knowledge Acquisition
Framework

TABLE I
TRAINING SCHEMATIC

Trial Number Training Datasets Iterations Schematic

1-6 dataset A 1 single

7-9 dataset A 2 single

10-12 dataset A 3 single

13-24
dataset A
dataset B
dataset C

1 multi

B. Training

The system was first trained with past flight records of
Go-Around scenarios conducted in unstable configurations.
This training resulted in an initial representation of context
and corresponding rules of that context. There were a total
of 3 flights used for training the initial context, flown by 3
fliers. We refer to these trails as dataset A, dataset B, and
dataset C. Using these datasets, we primed each execution
of the Knowledge Acquisition framework with a training
schematic. We used either single or multi training methods,
where in single cases, our system was trained with only one
Go-Around data sample (dataset A), and in multi cases, our
system was trained with 3 different data samples (dataset A,
dataset B, and dataset C).

Training resulted in an initial representation of the context
”unstable below 1000ft on approach”, including a feasibility
region for the 130 data fields, a set of discrete values, and
a set of trained DST based rules. Formally, resulting context
C∗ = UNSTABLE, BELOW1000FT predicts GA as an
outcome.

C. Calculation of Confidence Values

At each iteration of the algorithm, the confidence values of
the central elements are calculated (CEconf ). The confidence
value on the context is calculated by using cockpit data to
determine a value between 0 and 1 representing how likely it
is, based on cockpit evidence, that the discrete features of the
assumed context currently hold. For example, using altitude
data and glide slope data coming in from the cockpit, a value
for each discrete feature is generated, and the mean of the con-
fidence of all discrete features in the assumed context holding
true is generated. A similar process holds for the calculation



Fig. 3. Feasibility Region associated with a given context

of the observed outcome. However, for the calculation of the
confidence of a prediction value, the algorithm instead uses
DST intervals to extract out a confidence measure.
Example Suppose we have a context C∗ =
{UNSTABLE,BELOW1000FT} with associated DST
rules C∗ =⇒ GA[0.7,0.9] and C∗ =⇒ L[0.1,0.3]. Suppose
we also observed that the aircraft is at altitude alt and
descending. We proceed to calculate the confidence values
for the central elements of C∗ in the following manner:

C∗conf =
UNSTABLEconf +BELOW1000FTconf

2
(11)

P∗conf = max(
Bel(GA) + Pl(GA)

2 · Un(GA)
,
Bel(L) + Pl(L)

2 · Un(L)
)

(12)

O∗conf =


|alt−1000|

100 900 ≤ alt ≤ 1100

0 alt ≥ 1100

1 alt ≤ 900

(13)

where UNSTABLEconf and BELOW1000FTconf are
extracted from altitude and glide slope data, and alt is the
altitude of the aircraft at the time of calculation of the
confidence values.

D. Data Representations

Data Point At the most primitive level, we represent each
raw data point as a list of 130 data fields corresponding to
the information available in the cockpit. These data points are
used by the framework to build representation of context, and
to calculate confidence values of the central elements. Data
included information on aircraft state, the state of the devices
within the aircraft, weather information, etc.
Context We represent a given context C with three parts; rules,
discrete data, and continuous data. The rules are a set of DST
hypotheses in the form of implications which express the out-
comes of being in a context. For example, C∗ =⇒ GA[0.7,0.9]

and C∗ =⇒ L[0.1,0.3]. The DST intervals are generated in the
initial training step. The discrete data within a context consists
of a set of features, predefined by subject matter experts,
that contains a subset of the elements {ABOV E1000FT ,

Fig. 4. Normal Context with associated rules

BELOW1000FT , UNSTABLE, STABLE}. The selec-
tion of discrete features happens through analysis of aircraft
altitude and glide slope. ABOVE1000FT, BELOW1000FT are
mutually exclusive, and UNSTABLE, STABLE are mutually
exclusive. Additionally, the heuristics used by the framework
to find salient features at the time of anomaly occurrence are
able to discover discrete data that is not predefined, but rather
found through analysis of cockpit data. Lastly, the continuous
data of a context is generated by populating the context with
a feasibility region, which is learned through training on past
flight data.

VI. RESULTS

We tested our system for its ability to successfully detect
an anomalous context at the point in time where it occurred,
and for its accuracy in explaining the reason for the occur-
rence. In our trial runs, we adjust the fuel weight of the
system to be at a lowered level to simulate a condition for
an emergency landing. In order to quantify ”explainability,”
we looked at the number of anomalous factors that were
detected at the time of the anomaly, and the accuracy of
the factors. A perfect set of explanatory factors was 4 (BE-
LOW1000FT, UNSTABLE, FUELWEIGHTLB BELOW CRIT,
UPDATECOUNTER ABOVE CRIT), but a successful run is
only required to have at least these 4 factors. That is, it
was successful in the case that it had more than 4 features,
potentially erroneous, as long as the set of four were detected.
This characterizes systems ability to detect the original discrete
contextual features (BELOW1000FT , UNSTABLE) to
ensure that it was able to accurately detect context, along
with the additional features discovered through analysis of the
feasibility region (FUELWEIGHTLB BELOW CRIT ,
UPDATECOUNTER ABOV E CRIT ).

A. Variance in Timing of the Anomaly

Each time step ranged from 744 ms to 766 ms with an
average of 747.7 ms per time step. The first 12 simulations
were run at 100 time steps per run, and the last 10 were run at
120 time steps per run (overall average of 109.1 time steps, or
81567.3 ms). The extended time was to allow for the fliers to
take their time when dropping below the 1000ft marker, to see
how the timing of the anomaly affected results. We found that
the timing of the anomaly had no effect on the system’s ability
to successfully detect anomalies, or on its ability to explain
the anomaly (the systems’ ability to detect the low fuel level).



Fig. 5. Contextual representations with corresponding rules

B. Variance in Training

We tested our system against variance in training data.
We used either single or multi training methods, where in
single cases, our system was trained with only one Go-Around
data sample, and in multi cases, our system was trained with
3 different data samples. We tested 4 different single case
trials, and found that in 3 of the trials, the system had a
perfect explanatory detection, and in 1 trial, the system picked
up 6 additional factors. We attribute this to the variance
in flight trajectory presented in the the 3 successful trials,
which included ”rolls” and ”zig zags.” For every trial flown,
we tested the system with both single and multi schemes.
We found that the single training cases found an average of
11.31 newly discovered discrete features (explanatory factors),
whereas multi training schemes had an average of 5.23 newly
discovered discrete features, with an overall of 2.35 times more
features found in the single training case versus multi. By
adding two additional training samples, the system’s accuracy
was increased by 116%.

C. Variance in Fliers

Our 24 trials were flown with three participants, none of
whom had past flight experience. The three participants had 3
levels of flying experience with the VISTAS simulator. Within
these trials, we varied flight trajectory, with some flights flying
in an unstable configuration below the glide slope, and others
flying above the glide slope. Despite these differences, the
system was able to detect the anomaly at the time of its
occurrence in every trial.

VII. CONCLUSION AND FUTURE WORK

We created a system that was able to detect and reason about
anomalies in an aviation context in a real-time, human-in-the-
loop proof of concept implementation. The success of the sys-
tem was invariant across changes in participants, training, time
of the anomaly occurrence, and flight trajectory or training
and system testing. The main limitation of our framework is
that the feasibility region heuristic for anomaly detection is
limited, and its single dimensionality may not be sufficient
for all anomaly cases. Some anomalies may only be realized
when considering a multifaceted combination of factors. These
cases were not considered in our proof of concept. In future
work, we plan on extending our framework to handle more
complex aviation domain applications. We would also like to

explore the potential for integrating human factors heuristics
for discovering the explanatory features of the anomalous
context, like psycho-physiological data measures from the
pilot (ex. eye trackers), or natural language input from the
flight crew.
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