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Abstract
We propose an approach to analogical inference
that marries the neuro-symbolic computational
power of complex-sampled hyperdimensional com-
puting (HDC) with Conceptual Spaces Theory
(CST), a promising theory of semantic meaning.
CST sketches, at an abstract level, approaches to
analogical inference that go beyond the standard
predicate-based structure mapping theories. But it
does not describe how such an approach can be op-
erationalized. We propose a concrete HDC-based
architecture that computes several types of analogy
classified by CST. We present preliminary proof-
of-concept experimental results within a toy do-
main and describe how it can perform category-
based and property-based analogical reasoning.

1 Introduction and Motivation
“Analogies are partial similarities between different situations
that support further inferences.” [Gentner, 1998] The well-
known formulation

A : B :: C : X (1)
represents an analogy. Analogical reasoning entails many
key aspects of human cognition and involves several key pro-
cesses: retrieval (given C , find A and B ), mapping (deter-
mine a structural correspondence between A and B to find
X , by applying the correspondence to C ), and inference (us-
ing A to advance the concept C ). In this paper, we focus on
the task of mapping – more specifically, the task of identify-
ing a relationship between A and B , and then applying the
identified relationship to characterize X . The particular chal-
lenge with mapping is that there is often a large number of
potential relationships between A and B , and these relation-
ships may themselves be compositional and graded in nature,
as well as span the symbolic/sub-symbolic representational
divide. Finding the salient relationships – the ones between
A and B relevant to C – is a combinatorially hard problem.

Approaches to solving the mapping problem have been
either connectionist or symbolic, and both types of models
attempt to identify structural correspondence (graph isomor-
phisms) between concepts [Gayler and Levy, 2009]. Connec-
tionist approaches such as ACME and DRAMA [Eliasmith

and Thagard, 2001] are essentially “localist” [Page, 2000]
in nature, which means concept representations/symbols, al-
though connected within networks, remain localized to single
nodes. Purely symbolic approaches, on the other hand (such
as Structure Mapping Theory [Gentner, 1983; Crouse et al.,
2021]), explicitly incorporate the geometric graph structure
using a predicate-based representation. Both types of anal-
ogy engines remain constrained by their representations.

Localist-connectionist approaches require a decomposi-
tion and sequential symbolic traversal of the source and tar-
get structures, substantially increasing their time complexity
[Gayler and Levy, 2009]. Purely symbolic approaches strug-
gle to compute analogies that need to isolate salient concep-
tual properties of objects [Gärdenfors and Osta-Vélez, 2023].
Salience requires a distance metric that just does not exist
within a symbol-dominated space.

Neural networks offer more of a “distributed” connection-
ist approach. Unfortunately, however, their concept embed-
dings do not necessarily possess the structural and compo-
sitional aspects with which to perform analogical mapping.
Moreover, neural network models fail to generate many types
of analogies outside the distributions that characterize their
training sets, and they fail to provide the underlying hierar-
chical structure to support analogical inference [Pavlus, 2021;
Lewis and Mitchell, 2024]. A cognitive framework with the
ability to simultaneously and seamlessly represent these so-
far mutually exclusive connectionist and symbolic computa-
tional paradigms has been lacking [Lieto et al., 2017].

More recently, researchers have explored hyperdimen-
sional computing (HDC), synonymously known as vector-
symbolic architecture (VSA)1 as a paradigm for capturing a
number of neurally plausible cognitive phenomena, includ-
ing analogical mapping [Hersche et al., 2023; Kanerva, 1997;
Plate, 2003; Gayler, 2004; Blouw et al., 2016]. HDC is a rep-
resentational and inferential paradigm in which data struc-
tures can be represented with high-dimensional vectors, thus
bridging the symbolic/subsymbolic gap.

The study of analogical inference using HDC is relatively
new. Many open questions exist. In [Maudgalya et al., 2020],
for example, the salient aspects of the A : B relationship were
given, but it was assumed that the structure underlying A, B

1To ensure clarity, we will use the term hyperdimensional com-
puting or HDC in the rest of this paper.



and C were binary. The question of how to identify more
salient aspects of structure and allow for a more nuanced or
graded characterization of concepts remains open.

In this paper, we begin answering this question with a cru-
cial insight: that the HDC framework could operationalize the
cognitive science theory of Conceptual Spaces [Gärdenfors,
2000]. For over a quarter century, Conceptual Spaces Theory
(CST) has been an attractive guide for research in cognitive
science [Douven and Gärdenfors, 2019], neuroscience [Bell-
mund et al., 2018], and artificial intelligence [Zenker and
Gärdenfors, 2015]. Its strength lies in its inclusive ability to
model how sensory observations flow through an agent’s ini-
tial connectionist layer of observation processing, through a
layer of geometric concept space, and ultimately into a form
of symbolic representation often used for reasoning – thus
sharing many properties with HDC.

CST offers guidance on analogical mapping. Under CST,
analogical inference requires a distance metric within a con-
cept space. This requirement implies at least five necessary
and simultaneously present capabilities of an agent [Osta-
Vélez and Gärdenfors, 2022]:

1. It must continuously accept sensory observations in real-
time and encode these signals into working memory;

2. It must afford an algebraic calculus over distance metrics
within working memory;

3. It must afford a logical calculus in working memory;

4. It must cross-reference the same concepts during sen-
sory observation, geometric processing, and symbolic
processing;

5. It must provide interaction with long-term memory in an
associative capacity.

Neither structure mapping nor neural architectures alone sup-
port these five requirements. We argue that HDC can sup-
port these requirements and provide concrete guidance for
how concepts can be represented and analogized. We call
this model a “conceptual hyperspace.” CST offers a set of
algorithms to solve several types of analogies [Osta-Vélez
and Gärdenfors, 2022]. In this paper, we provide a proof-of-
concept for how these algorithms can be implemented with
HDC: how concepts can be encoded, how salient relation-
ships can be identified, and how mapping can be performed.
We also perform experiments in toy domains to illustrate the
approach.

2 Background
In this section, we introduce both the Conceptual Spaces The-
ory and the Hyperdimensional Computing paradigm, which
we will then combine in the next sections.

2.1 Conceptual Spaces
The Conceptual Spaces framework [Gärdenfors, 2000;
Gärdenfors, 2014] adopts a prototype theory of concept repre-
sentation [Murphy, 2002], which models concept prototypes
as points within a geometric metric space [Bellmund et al.,
2018]. This space is constructed from one or more property
dimensions of the represented concepts. Properties constitute

direct sensory observations or hierarchical abstractions built
from sensory observations. One or multiple integral proper-
ties constitute a domain. The integral color domain, for ex-
ample, consists of three property dimensions along the pos-
itive Real number line: hue, brightness, and saturation. The
weight domain consists of a single property dimension along
the positive Real number line. Concepts are convex regions
within the space. For concepts that span multiple domains,
the domains can be correlated or weighted in various ways.2

Figure 1 illustrates the color domain used as a running
example throughout this paper. The prototype for the color
concept PURPLE, for example, falls at the location HUE =
315◦, SATURATION = 87, and BRIGHTNESS = 53,
within a cylindrical frame of reference. Three other color pro-
totypes and their locations are also shown. The similarity be-
tween each of these colors can be modeled by their respective
prototype distances from each other.

2.2 Hyperdimensional Computing (HDC)
HDC uses hypervectors for computation. Hypervectors are
random high-dimensional (1,000+) vectors that combine hi-
erarchically to produce new hypervectors of the same di-
mension. The hypervectors entail binary ({0, 1}d), bipolar
({−1,+1}d), real (Rd), or complex (Cd) samples. A trade-
off typically exists between processing speed and computa-
tional power for each sample type. We pick complex samples
for our experiments, because they entail all other types and
are the most computationally powerful [Plate, 2000]. As neu-
romorphic hardware achieves greater fidelity, however, this
tradeoff may change. Researchers have suggested that com-
plex hypervectors map to neural cell assemblies, where the
phase of each sample represents the phase of their neuronal
spikes [Orchard and Jarvis, 2023].

A crucial advantage of high-dimensionality is that the like-
lihood of two random hypervectors being orthogonal is ex-
tremely high. This penchant for orthogonality means hy-
pervectors are capable of encoding scalars and representing
bases within a latent representation space. Compositions can
be represented in this space without much overlap, while re-
maining robust to noise. Additionally, through various op-
erations, atomic concepts can be composed symbolically to
define new abstract concepts. The HDC community has de-
veloped operations to manipulate these data structures, allow-
ing the creation of a flexible symbolic algebra over the vector
space. Several of these operations will be used to compute
analogical inference. We represent concepts within a latent
space using random complex hypervectors of length equal to
104.

Complex-sampled HDC uniquely affords mechanisms for
artificial intelligence such as traditional data structures like
trees and graphs [Kleyko et al., 2022], navigation [Komer
and Eliasmith, 2020], probabilistic modeling [Furlong and
Eliasmith, 2024], reinforcement learning [Ni et al., 2023],
models of Grid and Place cells [Bartlett et al., 2023; Dumont

2We adopt from Conceptual Spaces Theory only the definitions
we need to show the efficacy of HDC applied to analogical inference.
The interested reader can learn more about CST in [Gärdenfors,
2000; Gärdenfors, 2014].



and Eliasmith, 2020], etc. All of these mechanisms rely on
complex-sampled HDC’s ability to form kernels out of hyper-
vectors [Frady et al., 2022]. As we will show in the following
sections, we model concepts within conceptual hyperspace
as three-dimensional radial basis kernel functions. Section 3
outlines our general approach, and Section 4 focuses more on
its details.

3 Proposed Approach: Conceptual
Hyperspaces

In this section, we begin formally defining the problem set-
ting and our proposed approach for solving the analogical
mapping problem.

3.1 Problem Definition
We return to our compositional analogy of Eq. 1. Here, A
and B are “source” concepts and C and X are “target” con-
cepts [Gentner, 1998]. The mapping task is to find X that
satisfies the underlying analogical relationship, namely that
the relationship between the source concepts matches the re-
lationship between the target concepts. Consider a domain D
that is a vector subspace (of, say, Rn) with k bases. Here, we
can initially represent the concepts A,B ,C ≤ D as them-
selves being subspaces within D , and therefore representable
within D . For example, we can think of the “color” domain
comprising k = 3 bases – hue, saturation and brightness –
and the concept of red can be thought of as shades of “red”
falling within the subspace of color that an agent might con-
sider to be reddish. Because concepts are often vaguely de-
fined, we leverage prototype theory and capture prototypes
within concepts, which are meant to represent the concept
more precisely. Here, prototypes are individual vectors or
points in a domain, such as pX ∈ D . Thus, when computing
analogies between concepts A,B ,C , we use prototypes3 to
compute pA : pB :: pC : pX . Since prototypes are vec-
tors in D , they have projections onto each of the bases of D ,
thereby representing the extent to which a prototype extends
along that basis. Compositionally, this is a useful notion al-
lowing us to capture how much hue, saturation and bright-
ness the prototypical red has. The D , together with its bases,
allow us to represent concepts as convex regions in D and
prototypes as points in D . We can now define an analogical
mapping problem in terms of conceptual spaces as follows:
Definition 1. Analogical Mapping Problem: Given pA ∈
A,pB ∈ B and pC ∈ C , determine pX ∈ X , including
projections of pX along each of k bases of domain D such
that concepts A,B ,C ,X ≤ D.

An implicit prerequisite in Def. 1 is that the source and
target concepts can all be represented within domain D using
a set of salient k basis, which we will discuss in the next
section together with an approach for solving this task.

3.2 Analogical Mapping Algorithm
Algorithms 1 to 4 describe the proposed approach to using
HDC to solve the analogical mapping problem. Overall, the

3We could just as well use non-prototypical points to compute,
but we stick to prototypes in this section, because it conforms to our
running example within the color domain.

approach is to encode the prototypes into hyperspace, search
for the analogical mapping in hyperspace, and then decode
the hypervector to obtain the prototype of the desired target
concept. More broadly, our approach has two general steps:
(1) ensure saliency requirements are satisfied to construct the
computation, and (2) perform the computation of the analogy.

Algorithm 1 Overall

1: Input: pA ∈ A,pB ∈ B and pC ∈ C
2: Output: pX ∈ X
3: a,b, c← encode([pA,pB ,pC ])
4: x← find([a,b, c])
5: pX ← decode(x)
6: return pX

Two assumptions are made in this algorithm:

1. That k bases for a domain4 D has been obtained.
Such a bases set captures shared properties of concepts
A,B ,C . In the case of our color example, all the con-
cepts share a common set of three basis. In other prop-
erty domains5 this may require additional processing,
the discussion of which is beyond the scope of this pa-
per. See [Gärdenfors, 2000] for more insight.

2. That we already have prototypes pA,pB ,pC selected
for the concepts. This may require retrieval from long-
term memory.

To encode the prototypes, we propose using a Fractional
Power Encoding, which allows us to capture gradations along
each of our basis in the domain. Algorithm 2 shows us how to
encode by first generating basis hypervectors for each of the
k dimensions of the domain, D . These are randomly sam-
pled complex hypervectors from a Gaussian distribution. To
encode, we exponentiate these hypervectors with normalized
prototype property values and then bind the k hypervectors
together for each prototype. This operation produces a new
hypervector of the same d dimensions and serves as a 3D ra-
dial basis function kernel in conceptual hyperspace.6

The approach taken to solve an analogical inference prob-
lem within conceptual space depends on the type of analogy
being calculated. For analogies confined to object categories,
CST recommends the Parallelogram model [Rumelhart and
Abrahamson, 1973]. We implement this model in hyper-
space, as shown in Algorithm 3, via binding operations with
hypervectors.

x represents a latent point in k-dimensional conceptual hy-
perspace, implemented by a d-dimensional hypervector in
bound superposition. But we don’t know the exact location in
k-space (within domain D) of the prototype for concept X ,
because this information is distributed within the hypervector
and not human interpretable. The challenge of “factorizing”
the components of the hypervector stems from the combina-

4The term “domain” here refers to a vector subspace, not the
CST-specific term.

5Here we refer to the CST-specific definition of “domain.”
6by “zip” on line 9, we mean iterator of tuples where they are

incremented in pairs in a lock-step manner



Algorithm 2 encode

1: Input: pA,pB ,pC

2: Output: F
3: k ← dim(D)
4: B← sampleBasesHypervectors(k)
5: p̂A, p̂B , p̂C ← normalize(pA,pB ,pC )
6: initialize F to contain the encoded versions of

p̂A, p̂B , p̂C

7: for p̂i ∈ [p̂A, p̂B , ˆpC ] do
8: initialize fi
9: for m, j ∈ zip(B, p̂i) do

10: m∗ ← exp(bi, j) {FPE exponentiation}
11: fi ← fi ⊛m∗ {binding operation}
12: end for
13: F← append(fi)
14: end for
15: return F

Algorithm 3 find (using parallelogram method)

1: Input: a,b, c
2: Output: x
3: x← (c⊛ a−1)⊛ b
4: return x

torial explosion that occurs from explicitly encoding all pos-
sible locations in hyperspace and comparing each one against
x. To address this issue, researchers have recently developed
so-called resonator networks that enable factorization without
such an exhaustive search [Frady et al., 2020].

Algorithm 4 decode

1: Input: x, resolution
2: Output: pX

3: k ← dim(D)
4: Q← makeCodebook(resolution, k)
5: px ← resnet(x,Q)
6: return pX

A first step in factorization or decoding is in making a
“code book” for each of the k bases of domain D . A code
book, Q, is a set of reference hypervectors built from each ba-
sis in the domain. If the domain is Rk, then there are k code-
books. We discretize each dimension into discrete points, de-
pending on our desired resolution. For example, when han-
dling colors, we can normalize each of the k dimensions into
a range of [-10,10] and then assign one point for each 0.5
increment, creating 41 locations along each of our 3 basis di-
mensions of the color domain. If we assign a hypervector
to each of these locations, we obtain three code books, each
containing 41 d-dimensional hypervectors. We then employ
a resonator network to iteratively discover the underlying fac-
tors for pX .

Figure 1: Color domain showing the location of prototype
points for PURPLE, BLUE, ORANGE, and YELLOW.

Figure 2: A complex-sampled hypervector of dimension d =
1000 samples initialized to a Gaussian phase distribution
around the unit circle: ϕ ∼ N (µ, σ2), where here µ = 0 and
σ = π

7
. We experimented with various σ values.

4 The Conceptual Hyperspace
4.1 Encoding Concepts in Hypervectors
To detail our approach using HDC for encoding conceptual
hyperspace, we return to our running example of a composed
analogy, this time associated with colors.

PURPLE : BLUE :: ORANGE : X

Figure 1 shows the geometry of this composed analogy
within the color domain. The example starts by building three
three-dimensional concept regions (for the operands purple,
blue, and orange) within the color domain. Since the color
domain is a three-dimensional space, we begin by initializing
three basis hypervectors, which define the space (Algorithm
2, Line 4).

A hypervector, x, in conceptual hyperspace initializes to a
Gaussian phase distribution around the unit circle:

x ∈ Cd, where sample xj = eiϕj ,

with phases ϕj ∼ N (µ, σ2), where µ is the mean phase and
σ the standard deviation in radians. See Figure 2. Bases hy-
pervectors with large enough σ initialize to orthogonal.

The agent must encode the color properties into a concept
space within its working memory. A visual preprocessing



step extracts a concept’s property values from either a spe-
cific object in the environment or from prototypes in long-
term memory (steps beyond the scope of this work). For the
rest of this paper, we will presume to use prototypes rather
than observations. The three color property values then get
encoded into three hypervectors, one for each basis, which
represent prototype locations along their respective dimen-
sions (for example, encoding the amount of hue, saturation,
and brightness for each color). This encoding is done via
a process called Fractional Power Encoding (Algorithm 2,
Line10) [Komer et al., 2019]. The prototype locations may
also get stored into temporary variables to be used later. Both
FPE and variable storage apply one of HDC’s most funda-
mental operations, called binding.

The binding process is simultaneously a symbolic vari-
able operation and a signal processing operation. Binding
two HDC 7 hypervectors performs a circular convolution in
Fourier space, represented by the operator ⊛, which is a
sample-wise multiplication of the two hypervectors. Given
two hypervectors x ∈ Cd and y ∈ Cd, the result of their
binding is

z = x⊛ y. (2)
Figure 3 illustrates how binding adds the phases of each re-
spective pair of samples, given by ϕzi = ϕxi

+ ϕyi
. z results

in a hypervector orthogonal to both x and y if x and y start
orthogonal to each other.

Unbinding is the inverse of binding and is performed by
binding with the complex-conjugate of one operand. For ex-
ample, given Equation 2,

x = z⊛ y−1,

where y−1 is the complex-conjugate of y, making the phase
relationship between samples ϕxi

= ϕzi − ϕyi
. Unbinding

is used to dereference a value from a variable. Binding is the
base operation for FPE. FPE encodes a scalar into a hyper-
vector. Given a hypervector, x ∈ Cd, and prototype location
scalar, p ∈ R, z encodes p via exponentiation:

z = xp = x⊛ x⊛ ...⊛ x (p times). (3)

In Equation 3, the hypervector x appears p times. p can be
any Real value [Komer and Eliasmith, 2020]. Figure 4 shows
what happens to the phase of each sample of x after an FPE
encoding. The initial phase gets multiplied by p, and the en-
coding process behaves as p sequential bindings, even if p is
not an integer.

By binding together our three fractionally power encoded
basis hypervectors (Algorithm 2, Line11) , we build a la-
tent concept prototype within the color domain of concep-
tual hyperspace. For example, the final concept encoding for
PURPLE looks like this:

PURPLE = x6.2 ⊛ y−6.2 ⊛ z5.3, (4)

where we establish Cartesian locations p1 = 6.2, p2 = −6.2,
and p3 = 5.3 for the “prototype location” based on the fol-
lowing pre-processing steps (Algorithm 2, Line 5), where

7Throughout this paper we simply refer to complex-sampled hy-
pervectors as “HDC” hypervectors. A synonymous name for hyper-
vectors with complex sample type is Fourier Holographic Reduced
Representation (FHRR).

Figure 3: Result of one sample-wise binding op-
eration between two complex hypervectors.

Figure 4: Result of fractional power encoding for
one sample within a complex hypervector.

β = 10 is a scaling constant, and we use the values HUE =
315◦, SATURATION = 87, and BRIGHTNESS =
53:

p1 = cos(HUE) · SATURATION/β,

p2 = sin(HUE) · SATURATION/β,

p3 = BRIGHTNESS/β.

Because we initialized each basis to a Gaussian distribu-
tion, our concept in hyperspace, shown in Equation 4, retains
the computational properties of a latent three-dimensional
radial basis kernel embedded within a single d-dimensional
complex-sampled hypervector.

4.2 Analogical Mapping Algorithm for
Category-based analogies

Researchers have classified the semantic relationships present
in analogy (e.g., the colon in A : B) into many dif-
ferent types [Collins and Burstein, 1987; Osta-Vélez and
Gärdenfors, 2022] that can broadly fall into “category-based”
and “property-based.” There are other classifications like
event-based, part-whole, and causal; but for this paper we
focus on just the first two.

Recall our example from above.

PURPLE : BLUE :: ORANGE : X

We solve for X , after first guaranteeing A, B , and C satisfy
the algorithm-specific pre-processing requirements. For this
algorithm, there are two pre-processing requirements:



1. Check that concepts A, B, and, C are labeled in long-term
memory as a common superordinate category. Labelling
and label checking can be accomplished through a vari-
ety of methods, including Kanerva’s distributed record
[Kanerva, 1997], graphs, tree structures, or state ma-
chines, [Kleyko et al., 2022]. Each of these symbolic
data structures can be built with HDC and efficiently
store properties of prototypes within long-term memory
or perform other symbolic logic. The detailed imple-
mentation of this long-term memory is beyond the scope
of this paper and a work in progress.

2. Find the dimensions over which each A and B have com-
mon properties. This step can also be solved using HDC
methods and is beyond the scope of this paper.

In this example, all operands are already within the color
category (which also happens to be a single domain), so no
algorithm-specific pre-processing needs to happen.

Since all concepts are now known to be within the same
category, it is straightforward to find the location for the pro-
totype of X . We apply the Parallelogram model (Algorithm
3, Line 3) [Rumelhart and Abrahamson, 1973]:

pX = pC − pA + pB (5)

Encoding these locations into hypervectors by applying
Equation 5 within a conceptual hyperspace and applying the
appropriate HDC operations, gives us

x = (o⊛ p−1)⊛ b, (6)

where we have abbreviated the colors to the first letter of
their names. It’s worth noting a few things at this point. We
know from the statistical literature that the convolution of two
Gaussian distributions adds their means [Jaynes, 2003]; and
because each complex hypervector lives within the Fourier
domain, the sample-wise multiplication of the binding oper-
ator performs a convolution. All elements of the operand hy-
pervectors compute within bound superposition of three en-
coded basis per concept. The result hypervector, x, remains
entangled within bound superposition and remains random.
Nevertheless, the phase changes induced by the algebraic op-
erations used to compute the analogy maintain their statistical
fidelity within the answer.

While we have access to the hypervector elements that
comprise our answer’s prototype, we do not yet know its en-
coded latent Cartesian location (p1, p2, p3). This location is
deeply encoded into the aforementioned bound superposition.
To find an estimate of the encoded location within each basis
hypervector, we employ an HDC resonator network [Frady
et al., 2020] whose job is to find factors like these within
bound superposition. Most mathematical details about how
resonator networks work are beyond the scope of this paper.
What is important, however, is this: If we build a code book
that contains all possible encoded hypervector factors as a
reference, then the resonator network can quickly factor the
bound superposition. The network can actually take advan-
tage of statistical properties afforded by this bound superpo-
sition rather than get hindered by them. The number of itera-
tions needed to find factors scales linearlyO(M), where M is
the search space size. Kent’s PhD thesis [Kent, 2020] shows

how resonator networks factor bound superposition problems
faster than any other known method.

The resonator network “collapses” the bound superposition
from a learned or innate range of typical property values, re-
sulting in an estimate for the prototype location, pX , when it
returns references to the set of factors. In this experiment, our
resonator network took two iterations to find the correct en-
coded basis factors for an estimate of pYELLOW (Algorithm
4, Line 5). Our model’s code book included 41 different pos-
sible encoded basis hypervectors for each dimension, span-
ning each basis’ range of possible normalized values from
−10 to +10, at increments of 0.5. In our experiment, the res-
onator network returned the location p1 = 0.5, p2 = 2.0, and
p3 = 9.5, which equates to un-normalized values of HUE =
75◦, SATURATION = 75, and BRIGHTNESS = 95.
This is as close as it could theoretically approach the proto-
type location for YELLOW, given the 0.5 normalized resolu-
tion of our code books.

Solving a Property-based Analogy
This type of analogy compares a semantic relationship be-
tween categories and properties. Recall the general represen-
tation for analogy:

A : B :: C : X

A property-based example provided by [Osta-Vélez and
Gärdenfors, 2022] is

APPLE : RED :: BANANA : X .

The steps to solving this composed analogy are the following:

1. Identify the salient property dimensions that correspond
to concept or property B . In this example, this would
be the bases dimensions associated with RED (i.e. the
color domain).

2. Find the location within the identified salient dimen-
sions closest to prototype location C . In this example,
this would be the location along the hue, saturation, and
brightness bases associated with concept BANANA (i.e.
YELLOW ).

In general, the agent will often need to search for salient prop-
erties. This search requires a distance metric. For example,
in this problem the agent needs to search for what bases con-
stitute RED . The agent stores bases in long-term memory,
because these bases hypervectors are needed to build code
books. To determine the salient bases associated with RED ,
the agent computes a distance metric between all domain
bases hypervectors stored in memory and the domain basis
hypervector used to encode RED . The closest domain hyper-
vector in memory to RED’s domain hypervector is the salient
one. By using the properties of HDC Gaussian kernels [Frady
et al., 2022], a simple dot-product between hypervectors mea-
sures their relative distance from each other within conceptual
hyperspace. 8 This brings us to the final part of our introduc-
tion to HDC. Similarity between complex-sampled unitary

8Each concept or basis hypervector is also a Gaussian kernel
within a formal Reproducing Kernel Hilbert Space (RKHS). This
fact affords the dot-product as a distance metric.



hypervectors is defined as the mean of the cosine of angle
differences between corresponding samples [Vine and Bruza,
2010]. This definition equates to the inner product between
two complex hypervectors. Given x ∈ Cd,y ∈ Cd, the rela-
tive distance between x and y is similarity(y,x) = y−1 ·x.
There could be myriad types of search depending on analogy
type. This example shows only one type of search. But given
the algebraic, symbolic, and metric operations afforded by
HDC, many different types of search are possible.

5 Discussion
The Importance of HDC as a Modeling Tool
Why should we care about using a neurally-plausible analogy
engine? Why can’t we just perform our analogical number
crunching with a base-10 number system? The traditional
approach would certainly be more straightforward.

The reason is because the more traditional approaches are
stuck at Marr’s algorithmic level [Marr, 1982]. Constrain-
ing our representations to be neurally-plausible adds scientific
value to our model. If we can achieve analogical inference by
using a model between Marr’s algorithmic and implementa-
tion levels, which we propose here, then we’ve reduced the
search space for an algorithm-plus-implementation towards
human-level intelligence.

At the engineering level, we concede that for the toy model
presented here, a neurally-plausible conceptual hyperspace
seems more complex than a traditional conceptual space us-
ing traditional vectors. But the brain does not use a von Neu-
mann architecture. As we scale this model to include more
cognitive functionality that would require more resources, we
could potentially build it within a spiking neural network or
other power-efficient neuromorphic hardware. Constraining
our AI models to neural-plausibility affords hope for human-
level cognitive efficacy at scale.

The Origin of Property Dimensions
The origin of property dimensions do not yet seem to be
deeply grounded in theory. Therefore, we plan to pursue
the best ways to model these. In this paper, we treat prop-
erty dimensions as orthogonal bases within a conceptual hy-
perspace, which act as building blocks for intrinsic domains.
This conveniently works out from both a signal processing
and cognitive science perspective. The signal processing the-
ory literally requires orthogonality to afford kernel construc-
tion. If it turned out that the brain built a hierarchy of prop-
erty dimensions from a finite set of orthogonal basis dimen-
sions then this would also be elegantly satisfying for cog-
nitive science. [Wierzbicka, 1996] provides a finite set of
semantic primitives over all languages, which seems like a
good place to start building such a conceptual hyperspace
model grounded on a finite set of atomic property dimensions.
Through HDC operations, we could then generate hierarchi-
cal property dimensions on the fly that correspond with anal-
ogy algorithm requirements.

Neuroscience experiments that take place in fMRI
machines show evidence that the Entorhinal cortex-
hippocampus system quickly builds highly specific hierar-
chical concept regions. For example, the regions reported
in [Bellmund et al., 2018] are “Neck length” versus “Leg

length.” We can possibly use HDC to teach an agent how to
build the appropriate property dimensions. HexSSP, which
are HDC kernel hypervectors that model Place and Grid cells,
introduced by [Bartlett et al., 2023], may afford learnable
resolution sizes for property dimensions. We would like to
integrate this learning of property dimensions with efficient
resonator network code book design, as well.

Exploration of Kernel Functions
Playing with the bandwidth on our radial basis kernel func-
tions allows us to shape the similarity regions within con-
ceptual hyperspace. Given the flexibility of HDC, radial ba-
sis functions are not the only kernel function at our disposal,
however. Playing with different kernel types and their respec-
tive parameters afford myriad concept region shapes [Frady
et al., 2022] for a variety of semantic similarity. Most ker-
nel similarities adhere to the (arguably) soft CST requirement
of maintaining domain convexity [Hernández-Conde, 2017].
But if we’d like to model non-convexity, then that’s possible
too. It’s possible (albeit inelegant) to symbolically label any
concept by binding to it an additional hypervector, which can
be stripped off before signal processing begins. [Balkenius
and Gärdenfors, 2016] discuss radial basis function network
models for learning within the context of motor movement,
reasoning, and other applications. The agent can potentially
learn the appropriate kernels to use along with their respective
parameters.

Conceptual Hyperspace as a Generative Model
HDC allows us to build novel concept regions in a generative
manner. If the answer to an analogy problem generates a con-
cept location that does not, say, already have a linguistic or
symbolic label within a minimal distance of an existing pro-
totype, then the agent has an opportunity to be creative. The
way we’ve modeled a concept space with kernel functions
does not require the entire space to be tiled with concepts.
Any time a new concept is produced, the agent can use the
kernel properties of HDC to quickly find the new concept’s
distance to all existing prototypes and decide what it wants to
do – create a new prototype, merge with an existing concept,
implementing a sort of exemplar model via additive HDC su-
perposition (an HDC operation not covered in this paper), or
do nothing, allowing the agent to retain a more holistic con-
ceptualization. In this manner, HDC has the potential to ex-
tend CST into a generative framework not constrained to a
rigid theory of prototypes.

We know that analogy is the “Fuel and Fire of Thinking”
as Douglas Hofstadter [Hofstadter and Sander, 2013] likes to
say. Therefore we know that analogical inference likely plays
a role in all forms of cognition. This is a core principle that
will guide us as we move forward with this research.
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